检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张彭辉[1] 肖攸安[2] 赵建仓 丁康康 侯健[1] ZHANG Peng-hui;XIAO You-an;ZHAO Jian-cang;DING Kang-kang;HOU Jian(State Key Laboratory for Marine Corrosion and Protection,Luoyang Ship Material Research Institute,Qingdao 266101,China;Wuhan University of Technology,Wuhan 430063,China)
机构地区:[1]中国船舶重工集团公司第七二五研究所海洋腐蚀与防护重点实验室,山东青岛266101 [2]武汉理工大学,武汉430063
出 处:《装备环境工程》2021年第12期73-78,共6页Equipment Environmental Engineering
摘 要:目的充分利用海洋腐蚀数据,深入分析数据规律。方法在BP神经网络的基础上引入遗传算法,以克服神经网络模型固有缺陷,提高预测精度和训练速度。结果对GA-BP人工神经网络进行了简要阐述,并以铜合金在海水中的腐蚀数据为例,应用GA-BP人工神经网络建立了海水腐蚀预测模型,对预测结果进行了评价。结论预测结果表明,模型能满足设计要求,具有较好的泛化能力。This paper aims to take full advantage of corrosion data and deeply analyze corrosion law.The genetic algorithm(GA)was introduced to improve the back propagation(BP)artificial neural network(ANN),with a view to overcome the in-herent defect of ANN and increase prediction accuracy and training speed.In this paper,a brief interpretation of GA-BP artifi-cial neural network was given.And based on the corrosion data of copper in marine environment,the GA-BP artificial neural network method was applied to the building process of marine corrosion prediction model.The experimental results showed that the model can meet the design requirements and had good generalization ability.
分 类 号:TG172[金属学及工艺—金属表面处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117