检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孟安波[1] 陈顺 王陈恩 丁伟锋 蔡涌烽 符嘉晋 周华敏 MENG Anbo;CHEN Shun;WANG Chen’en;DING Weifeng;CAI Yongfeng;FU Jiajin;ZHOU Huamin(School of Automation,Guangdong University of Technology,Guangzhou 510006,Guangdong Province,China;Machine Patrol Management Center of Guangdong Power Grid Co.,Ltd.,Guangzhou 510160,Guangdong Province,China)
机构地区:[1]广东工业大学自动化学院,广东省广州市510006 [2]广东电网责任有限公司机巡管理中心,广东省广州市510160
出 处:《电网技术》2021年第12期4692-4700,共9页Power System Technology
基 金:国家自然科学基金项目(61876040)。
摘 要:高精度的风电功率预测对风电的并网运营至关重要。为提取风电功率输入序列隐含的时间信息,建立以门控循环单元为基础的预测模型;并在模型输入侧引入时序注意力机制,通过与输入进行加权的方式提高模型对关键历史时间节点的敏感性。为加速模型收敛,在训练的早期利用动态混沌纵横交叉算法优化预测模型的权值和阈值;同时,通过构造多指标共同作用并联合待优化参数的正则项作为目标适应度函数,以避免优化过程中模型泛化性问题的出现。以某风电场采集间隔为1h和10min的实测数据进行实验,结果表明所提组合预测方法性能优于其他对比模型,并对其有效性进行了验证。Highly accurate wind power forecasting is crucial to the grid-connected operation of wind power.A prediction model based on the gated recurrent unit is established to extract the temporal information implied in the wind power input sequence.Moreover,the temporal attention mechanism is introduced into the input side of the model,which improves the sensitivity of the model to the key historical time nodes by weighting the inputs.To accelerate the convergence of the model,the weights and thresholds of the prediction model are optimized by using the dynamic chaotic crisscross optimization algorithm at the early stage of the training.At the same time,by constructing the multi index interaction and combining the regularization terms of the parameters to be optimized as the objective fitness function,the problem of generalization of the model that may occur in the optimization process is avoided.The experimental results based on the measured data at 1 h and 10 min intervals collected in a wind farm demonstrate that the performance of the proposed combination forecasting method is better than the other comparative models,its effectiveness verified.
关 键 词:风电功率预测 门控循环单元 时序注意力机制 动态混沌纵横交叉算法 正则化
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70