检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨璐 南刚强 陈明轩 宋林烨 刘瑞婷 程丛兰 曹伟华 YANG Lu;NAN Gangqiang;CHEN Mingxuan;SONG Linye;LIU Ruiting;CHENG Conglan;CAO Weihua(Institute of Urban Meteorology,China Meteorological Administration,Beijing 100089,China)
出 处:《气象学报》2021年第6期1022-1034,共13页Acta Meteorologica Sinica
基 金:国家重点研发计划项目(2018YFF0300102);国家自然科学青年基金项目(41805034、41705091)。
摘 要:冬季降水相态及其转变时间的精细化客观预报对提高气象预报和服务质量具有重要的现实意义。利用京津冀地区国家级自动气象站观测资料及网格化快速更新精细集成产品,统计分析了京津冀地区复杂地形下各类降水相态温度和湿球温度平均气候概率的分布差异及不同降水相态时网格化快速更新精细集成产品中可能影响降水相态判断的特征信息。然后将地面观测天气现象资料、复杂地形下降水相态气候特征及高分辨率模式输出产品作为特征向量,分别基于梯度提升(XGBoost)、支持向量机(SVM)、深度神经网络(DNN)3种机器学习方法建立了降水相态的高分辨率客观分类模型,并对同样条件下3种机器学习方法对雨、雨夹雪和雪3种京津冀主要降水相态的预报效果进行了对比检验,进一步提升了雨夹雪复杂降水相态的客观分类预报技巧。Refined and objective prediction of precipitation type and its transition time in winter is of great practical significance for improving the quality of forecast service.This paper establishes a high-resolution precipitation type prediction model based on temperature and weather phenomena data collected at 174 national automatic weather stations for the period 1955—2019 in Beijing-Tianjin-Hebei and the high-resolution forecast products of rapid update multi-scale analysis and forecast system-integrated subsystem(RMAPS-IN)using three machine learning methods,i.e.,the XGBboost,the support vector machine(SVM)and the depth neural network(DNN)prediction models.Firstly,differences in spatial distribution between various precipitation types and corresponding climatologically mean probabilities of air temperature and wet bulb temperature at 174 national stations in Beijing-Tianjin-Hebei region are statistically analyzed.The fine integrated products provided by RMAPS-IN,i.e.,2 m air temperature,dew point temperature,relative humidity,snowline height,the ratio of frozen precipitation to total precipitation in the near surface atmosphere for different precipitation types,and the analysis fields of three-dimensional meteorological elements such as temperature and wet bulb temperature are analyzed.The observational weather phenomena,climatological characteristics of precipitation type over complex terrain and high-resolution model output products are taken as feature vectors.The classification model of precipitation type is then established based on the XGBboost,SVM and DNN,and the prediction effects of three machine learning algorithms on rain,sleet and snow are compared and evaluated.The results show that:(1)the accuracy of the three machine learning methods for rain,sleet and snow prediction can be significantly improved by adding climatological features of precipitation type over complex terrain to the feature parameters;(2)the prediction ability of the three machine learning methods for rain and snow is better than tha
关 键 词:降水相态 客观预报 数值模式 气候统计 机器学习方法
分 类 号:P456[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49