基于压缩感知的电力扰动数据采集与分类方法  被引量:5

Data Acquisition and Classification Method of Power System Disturbance Based on Compressed Sensing

在线阅读下载全文

作  者:周桂平 李石强 于华楠[2] 王鹤[2] ZHOU Guiping;LI Shiqiang;YU Huanan;WANG He(Electric Power Research Institute,State Grid Liaoning Electric Power Company Limited,Shenyang 110006,China;Key Laboratory of Modem Power System Simulation and Control&Renewable Energy Technology,Ministry of Education Northeast Electric Power University,Jilin 132012,China)

机构地区:[1]国网辽宁省电力有限公司电力科学研究院,沈阳110006 [2]东北电力大学现代电力系统仿真控制与绿色电能新技术教育部重点实验室,吉林吉林132012

出  处:《吉林大学学报(信息科学版)》2021年第6期637-646,共10页Journal of Jilin University(Information Science Edition)

基  金:国家重点研发计划基金资助项目(2019YFB1505402)。

摘  要:针对目前电力系统扰动数据分类特征提取困难和易受谐波干扰的问题,提出一种新的基于压缩感知的电力系统扰动数据采集与分类算法。首先通过压缩感知和K奇异值分解(K-SVD:K-Singular Value Decomposition)字典学习算法,设计一种原子自适应的正交匹配追踪算法(AtOMP:Atom adaptive Orthogonal Matching Pursuit),对多种扰动数据进行压缩采集,然后提取扰动数据的稀疏特征、自适应字典原子的标准差、峭度、裕度因子和主频率个数5个分类特征,利用BP(Back Propagation)神经网络实现样本学习与分类。实验结果表明,该算法可实现扰动数据的高度压缩采集,数据量小,具有分类识别度高,抗干扰性强等优点。Power system disturbance data is of great significance for monitoring power system operation state and regulating its working mode.A new algorithm for power system disturbance data acquisition and classification is proposed based on compressed sensing.Firstly,an AtOMP(Atom adaptive Matching Pursuit)algorithm is designed based on compressed sensing and K-SVD(K-Singular Value Decomposition)dictionary learning algorithm to compress and collect various disturbed data.Then,the sparse feature of the disturbed data,the standard deviation of the adaptive dictionary atom,kurtosis,margin factor and the number of principal frequencies are extracted as the training samples,and the BP neural network is used to realize the sample learning and classification.The experimental results show that the proposed algorithm can achieve highly compressed data collection of disturbed data,small data amount,high classification recognition,strong anti-interference and other advantages.

关 键 词:压缩感知 稀疏字典 K-SVD算法 扰动信号分类 BP神经网络 

分 类 号:TM913[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象