检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴群妹[1] 陈中标[1] 朱耀武[2] WU Qun-mei;CHEN Zhong-biao;ZHU Yao-wu(Wuxi Vocational College of Science and Technology,Wuxi 214028,China;Wuxi Institute of Technology,Wuxi 214000,China)
机构地区:[1]无锡科技职业学院,江苏无锡214028 [2]无锡职业技术学院,江苏无锡214000
出 处:《塑料科技》2021年第11期76-79,共4页Plastics Science and Technology
基 金:江苏省高等教育教改研究课题(2019JSJG454)。
摘 要:以某型号手持测振表为实例,分析其结构特点,选择合适的材料,在Moldflow中建立注塑系统,并对其进行注塑翘曲变形分析。设计正交试验,将塑件的最大翘曲变形量作为优化指标,利用极差和方差分析法优化注塑工艺参数。基于正交试验数据建立BP神经网络预测模型,并对塑件的最大翘曲变形进行预测。结果表明:当模具表面温度为30℃,充填压力为96%,熔体温度为240℃,塑件的最大翘曲变形为0.969 mm,与初始参数相比降低27.09%。建立的BP神经网络预测模型误差范围在0.13%~2.67%之间,具有较高的准确性和可靠性,可应用于注塑成型参数优化,以提高生产效率。Taking a certain type of hand-held vibration meter as an example, the structural characteristics were analyzed,the appropriate materials were selected, the injection molding system was established in Moldflow, and the injection warpage deformation was analyzed. The orthogonal test was designed, and the maximum warpage deformation of the plastic part was used as the optimization index. The injection process parameters were optimized by range analysis and variance analysis. BP neural network prediction model was established based on orthogonal test data, and the maximum warpage deformation of plastic parts was predicted. The results show that when the mold surface temperature is 30 ℃,filling pressure is 96%, melt temperature is 240 ℃, the maximum warpage deformation of plastic parts is 0.969 mm,which is 27.09% lower than the initial parameters. The error range of the established BP neural network prediction model is 0.13%~2.67%, with high accuracy and reliability, which can be applied to the optimization of injection molding parameters to improve production efficiency.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145