检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鞠东豪 李宇[1,3] 王宇杰[1,2,3] 张春华 JU Donghao;LI Yu;WANG Yujie;ZHANG Chunhua(Institute of Acoustics,Chinses Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100039,China;Key Laboratory of Science and Technology on Advanced Underwater Acoustic Signal Processing,Chinese Academy of Science,Beijing 100190,China)
机构地区:[1]中国科学院声学研究所,北京100190 [2]中国科学院大学,北京100039 [3]中国科学院先进水下信息技术重点实验室,北京100190
出 处:《振动与冲击》2021年第24期50-56,74,共8页Journal of Vibration and Shock
摘 要:传统的特征提取算法往往依赖于算法设计者的先验知识,没有突出大数据的优势,所以在实际应用中分类正确率较差且对于不同应用场景的泛化能力也明显不足。使用深度学习算法进行舰船辐射噪声的特征提取,利用了大量无类标数据,使用堆栈稀疏自编码器算法训练特征提取神经网络,并使用Softmax分类器算法利用有类标数据对特征提取神经网络进行参数微调。应用SSDAE-Softmax算法以及主成分分析算法、线性判别分析算法以及局部线性嵌入算法三类机器学习算法对海试数据进行处理,SSDAE-Softmax算法能够从舰船辐射噪声中提取更加具有区分度的特征,能够提升舰船辐射噪声的分类识别正确率,试验结果表明在低信噪比以及少量训练样本的应用场景下分类效果均高于其他三类算法。The traditional feature extraction algorithm relies on the prior knowledge.Because it does not have the advantage of highlighting big data,the classification accuracy in practical application is poor and the generalization ability for different application scenarios is also obviously insufficient.In this paper,a deep learning algorithm was used for feature extraction of ship radiated noise,and a large number of classless data was fully utilized.The stack sparse self-encoder algorithm was to train the feature extraction neural network,and the Softmax classifier algorithm was used to fine-tune the parameters of the neural network by using class-based data.By comparing with the principal component analysis algorithm,the linear discriminant analysis algorithm,and the local linear embedding algorithm,it can be seen that the SSDAE-Softmax algorithm proposed in this paper can extract more discriminative features from ship radiated noise and improve the classification and recognition accuracy to some extent.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145