基于深度学习的加油站销量预测与营销策略应用研究  被引量:5

Gasoline Station Sales Prediction Method Based on Deep Learning and Its Application of Promotion Strategy

在线阅读下载全文

作  者:卢晨辉 冯硕 易爱华 叶晓俊[1] LU Chenhui;FENG Shuo;YI Aihua;YE Xiaojun(School of Software,Tsinghua University,Beijing 100084,China;Sinopec Sales Co.,Ltd.,Guangdong Branch,Guangzhou 510620,China)

机构地区:[1]清华大学软件学院,北京海淀100084 [2]中石化销售股份有限公司广东石油分公司,广东广州510620

出  处:《郑州大学学报(工学版)》2022年第1期1-6,共6页Journal of Zhengzhou University(Engineering Science)

基  金:国家重点研发计划项目(2019QY1402)。

摘  要:营销策略的制定是加油站业务的重要部分,而数据驱动的营销策略制定已成为加油站实现精准营销的迫切需求。为此提出了一种基于加油站历史数据、营销策略和关键特征的油品销量预测的深度学习模型和基于销量预测模型的营销策略制定方法。根据加油站历史数据特征,设计了一个多层次的网络结构处理不同类别特征的数据,并结合营销策略信息以执行油品的销量预测。另外,通过引入关键特征,提升了销量预测模型的准确度;通过输入营销策略信息的变更,实现了加油站营销策略的自动选择。在真实加油站数据构建的数据集上进行实验,结果显示:所提方法的销量预测模型相比其他主流方法具有更低的预测误差。Promotion strategy is an important part of gas station business,and data-driven promotion strategy has become an urgent demand for gas stations to achieve precise marketing.A deep learning model was proposed for forecasting gasoline sales based on historical gas station data,promotion strategies and key features,and a promotion strategy formulation method based on sales forecasting models.Due to the historical data characteristics of gas stations,a multi-level network structure was designed to process data of different types,and combine promotion strategy information to perform oil sales forecasts.In addition,by introducing key features,the accuracy of the sales forecast model was improved;by inputting different promotion strategies,the automatic selection of gas station marketing strategies was realized.The results of experiments conducted on a data set constructed from real gas station data showed that the sales forecast model proposed had lower forecast errors than other mainstream methods.

关 键 词:销量预测 数据驱动决策 深度学习 循环神经网络 人工智能应用 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象