LSTM RNN:detecting exploit kits using redirection chain sequences  被引量:5

在线阅读下载全文

作  者:Jonah Burgess Philip O’Kane Sakir Sezer Domhnall Carlin 

机构地区:[1]Centre for Secure Information Technologies(CSIT),Queen’s University Belfast,Northern Ireland Science Park,Queen’s Road,Belfast BT39DT,UK

出  处:《Cybersecurity》2021年第1期386-400,共15页网络空间安全科学与技术(英文)

摘  要:While consumers use the web to perform routine activities,they are under the constant threat of attack from malicious websites.Even when visiting‘trusted’sites,there is always a risk that site is compromised,and,hosting a malicious script.In this scenario,the injected script would typically force the victim’s browser to undergo a series of redirects before reaching an attacker-controlled domain,which,delivers the actual malware.Although these malicious redirection chains aim to frustrate detection and analysis efforts,they could be used to help identify web-based attacks.Building upon previous work,this paper presents the first known application of a Long Short-Term Memory(LSTM)network to detect Exploit Kit(EK)traffic,utilising the structure of HTTP redirects.Samples are processed as sequences,where each timestep represents a redirect and contains a unique combination of 48 features.The experiment is conducted using a ground-truth dataset of 1279 EK and 5910 benign redirection chains.Hyper-parameters are tuned via K-fold cross-validation(5f-CV),with the optimal configuration achieving an F1 score of 0.9878 against the unseen test set.Furthermore,we compare the results of isolated feature categories to assess their importance.

关 键 词:Exploit kits MALWARE LSTM 

分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象