MALWARE

作品数:128被引量:188H指数:6
导出分析报告
相关领域:自动化与计算机技术更多>>
相关作者:夏晓峰焦健胡浩然文伟平宋礼鹏更多>>
相关机构:重庆大学北京信息科技大学北京大学中北大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家教育部博士点基金北京市自然科学基金国家高技术研究发展计划更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
GENOME:Genetic Encoding for Novel Optimization of Malware Detection and Classification in Edge Computing
《Computers, Materials & Continua》2025年第3期4021-4039,共19页Sang-Hoon Choi Ki-Woong Park 
supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)(Project Nos.RS-2024-00438551,30%,2022-11220701,30%,2021-0-01816,30%);the National Research Foundation of Korea(NRF)grant funded by the Korean Government(Project No.RS2023-00208460,10%).
The proliferation of Internet of Things(IoT)devices has established edge computing as a critical paradigm for real-time data analysis and low-latency processing.Nevertheless,the distributed nature of edge computing pr...
关键词:Edge computing IoT security MALWARE machine learning malware classification malware detection 
Enhancing Malware Detection Resilience:A U-Net GAN Denoising Framework for Image-Based Classification
《Computers, Materials & Continua》2025年第3期4263-4285,共23页Huiyao Dong Igor Kotenko 
funded by the budget project FFZF-2022-0007.
The growing complexity of cyber threats requires innovative machine learning techniques,and image-based malware classification opens up new possibilities.Meanwhile,existing research has largely overlooked the impact o...
关键词:MALWARE CYBERSECURITY deep learning DENOISING 
Semantic Malware Classification Using Artificial Intelligence Techniques
《Computer Modeling in Engineering & Sciences》2025年第3期3031-3067,共37页Eliel Martins Javier Bermejo Higuera Ricardo Sant’Ana Juan Ramón Bermejo Higuera Juan Antonio Sicilia Montalvo Diego Piedrahita Castillo 
The growing threat of malware,particularly in the Portable Executable(PE)format,demands more effective methods for detection and classification.Machine learning-based approaches exhibit their potential but often negle...
关键词:MALWARE portable executable SEMANTIC convolutional neural networks 
Enhanced detection of obfuscated malware in memory dumps:a machine learning approach for advanced cybersecurity被引量:1
《Cybersecurity》2025年第1期103-125,共23页Md.Alamgir Hossain Md.Saiful Islam 
In the realm of cybersecurity,the detection and analysis of obfuscated malware remain a critical challenge,especially in the context of memory dumps.This research paper presents a novel machine learning-based framewor...
关键词:Obfuscated malware detection Memory dump analysis Advanced malware analytics Malware behavioral patterns Advanced malware analytics Machine learning in cybersecurity 
Cybersecurity Guide for SMEs: Protecting Small and Medium-Sized Enterprises in the Digital Era
《Journal of Information Security》2025年第1期1-43,共43页Anastasios Papathanasiou George Liontos Athanasios Katsouras Vasiliki Liagkou Euripides Glavas 
Small and Medium-sized Enterprises (SMEs) are considered the backbone of global economy, but they often face cyberthreats which threaten their financial stability and operational continuity. This work aims to offer a ...
关键词:CYBERSECURITY CYBERCRIME SMEs (Small and Medium-Sized Enterprises) Risk Management Ransomware PHISHING Social Engineering MALWARE 
Zero-day Malware Defence with Limited Samples
《Journal of Communications and Information Networks》2024年第4期340-347,共8页Yuanxiang Gong Chiya Zhang Yiyi Liu 
supported by the National Natural Science Foundation of China under Grant U20A20156;supported by the Foundation of National Key Laboratory of Radar Signal Processing under Grant JKW202303.
Zero-day malware refers to a previously unknown or newly discovered type of malware.While most existing studies rely on large malware sample sets,their performance is unknown when dealing with a limited number of samp...
关键词:malware classification deep convolution generative adversarial network 
Detecting Novel Malware Classes with a Foundational Multi-Modality Data Analysis Model
《Data Intelligence》2024年第4期968-993,共26页Xin Dai Zihan Yu Chenglin Liang Cuiying Gao Qidan He Dan Wu Zichen Xu 
supported by a sub-project of the National Key Research and Development Program of the Ministry of Science and Technology,with grant number 2022YFB4501700
With the increasing prevalence of Android software,protecting it against malicious threats has become a critical concern.Traditional malware detection methods,tailored for static environments,often fail to adapt to ev...
关键词:DNN model Multi-modality fusion Data analysis Malware detection 
Machine learning based fileless malware traffic classification using image visualization
《Cybersecurity》2024年第4期1-18,共18页Fikirte Ayalke Demmese Ajaya Neupane Sajad Khorsandroo May Wang Kaushik Roy Yu Fu 
supported in part by NSF Grants#2113945 and#2200538 and a generous financial and technical support from Palo Alto Networks,Inc.
In today's interconnected world,network traffic is replete with adversarial attacks.As technology evolves,these attacks are also becoming increasingly sophisticated,making them even harder to detect.Fortunately,artifi...
关键词:Network security Traffic classification Fileless malware Image visualization Machine learning INTRUSION 
Backdoor Malware Detection in Industrial IoT Using Machine Learning
《Computers, Materials & Continua》2024年第12期4691-4705,共15页Maryam Mahsal Khan Attaullah Buriro Tahir Ahmad Subhan Ullah 
With the ever-increasing continuous adoption of Industrial Internet of Things(IoT)technologies,security concerns have grown exponentially,especially regarding securing critical infrastructures.This is primarily due to...
关键词:Industrial IoT backdoor malware machine learning CCCS-CIC-AndMal-2020 security detection critical infrastructure 
Detection and Prevention of Malware in Android Mobile Devices: A Literature Review
《International Journal of Intelligence Science》2024年第4期71-93,共23页Joseph Keteku George Owusu Dameh Samuel Ameka Mante Thomas Kwashie Mensah Schneider Laryea Amartey John-Bosco Diekuu 
Despite only being around for a few years, mobile devices have steadily risen to become the most extensively used computer devices. Given the number of people who rely on smartphones, which can install third-party app...
关键词:Android Malware Android Mobile Application Security Malware Detection Mobile Security 
检索报告 对象比较 聚类工具 使用帮助 返回顶部