检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冉光金 李震 李良荣 Ran Guangjin;Li Zhen;Li Liangrong(College of Big Data&Information Engineering,Guizhou University,Guiyang 550025,China)
机构地区:[1]贵州大学大数据与信息工程学院,贵阳550025
出 处:《计算机应用研究》2022年第1期141-145,共5页Application Research of Computers
基 金:国家自然科学基金资助项目(61361012)。
摘 要:针对等比例剪枝导致的重要卷积层剪枝过度、残留大量冗余参数以及精度损失较大的问题,在FPGM剪枝策略基础上融入灵敏度分析进行网络剪枝。算法采用精度反馈来分析每一层卷积层的重要性,控制单层剪枝比例分析每一层不同剪枝比例对精度损失的影响,获取各个卷积层的灵敏度;结合FPGM策略分析卷积层内卷积核的重要程度按灵敏度的剪枝比例剪掉不重要的卷积核,达到对神经网络进行有效剪枝的目的。实验结果表明,所提方法在MobileNet-v1和ResNet50上剪枝率为50%的情况下,精确度仅下降1.56%和0.11%;所提方法在精度损失一致下,ResNet50上具有更高剪枝率和更低计算量。The purpose is to deal with the problems of excessive pruning of important convolutional layers caused by equal-scale pruning,retain many redundant parameters and large loss of accuracy.This paper integrated sensitivity analysis on the basis of FPGM pruning strategy for network pruning.The algorithm used precision feedback to analyze the importance of each convolutional layer,control the single-layer pruning ratio,analyze the impact of different pruning ratios in each layer on accuracy loss,and obtained the sensitivity of each convolutional layer.It could be combined with FPGM to analyze the importance of the convolution kernel and cut the unimportant convolution kernel according to the pruning ratio of the sensitivity to complete the neural network pruning.The experimental results show that the accuracy of this method only drops by 1.56%and 0.11%when the pruning rate on MobileNet-v1 and ResNet50 is 50%.This method has a higher pruning rate and lower calculation amount on ResNet50 under the same accuracy loss.
分 类 号:TP312[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.28.28