检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王芳[1] 崔丹丹[1] 李林 Wang Fang;Cui Dandan;Li Lin(School of Information Engineering,Kaifeng University,Kaifeng 475001,China)
出 处:《电子测量技术》2021年第20期162-167,共6页Electronic Measurement Technology
基 金:国家自然科学基金面上项目(61871199);河南省高等学校重点科研项目(21A520028)资助。
摘 要:为了提升采摘机器人对果实的识别准确率以及定位定精度,提出一种基于深度学习Faster-RCNN框架的采摘机器人目标识别和定位算法。首先采用卷积神经网络VGG16模型提取输入图像的特性信息,并利用区域提议网络RPN生成含有目标的候选框,通过引入自适应候选框数的方法有效提升了算法性能,然后利用多任务损失函数对目标进行分类识别和预测框校正定位,从而得到目标在图像坐标系统的高精准度坐标,最后通过标定求解出采摘机器人手眼两个坐标系之间的映射关系,从而实现了对果实的精确识别和定位。通过对苹果的识别和定位实验结果表明,所提算法具有较高的识别度,平均精度达97.5%,且定位误差更低,最大误差仅为1.33cm,可为智慧农业发展提供有力的技术支持。In order to improve the recognition accuracy and positioning accuracy of fruit picking robot,a target recognition and positioning algorithm based on deep learning Faster-RCNN framework was proposed.Firstly,the convolutional neural network VGG16model was used to extract the characteristics information of the input image,and the region proposal network RPN was used to generate the candidate box containing the target.The adaptive number of candidate boxes was introduced to improve the performance of the algorithm.Then,the multi task loss function was used to classify the target and correct the prediction box.Finally,the mapping relationship between the two coordinate systems of the hand and eye of the picking robot was solved by calibration,so as to realize the accurate recognition and positioning of the fruit.The experimental results of apple recognition and location show that the proposed algorithm has high recognition accuracy,the average accuracy is 97.5%,and the location error is lower,the maximum error is only 1.33cm,which can provide strong technical support for the development of smart agriculture.
关 键 词:采摘机器人 深度学习 卷积网络模型 特征提取 目标识别 坐标映射 定位
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112