系数矩阵为行最简形的线性方程组的同解性  

Identity of Solutions for Systems of Linear Equations with Row Reduced Echelon Coefficient Matrix

在线阅读下载全文

作  者:张姗梅[1] 刘耀军[2] ZHANG Shanmei;LIU Yaojun(Department of Mathematics,Taiyuan Normal University,Jinzhong Shanxi 030619,China;Department of Computer Science and Technology,Taiyuan Normal University,Jinzhong Shanxi 030619,China)

机构地区:[1]太原师范学院数学系,山西晋中030619 [2]太原师范学院计算机系,山西晋中030619

出  处:《大学数学》2021年第6期82-86,共5页College Mathematics

基  金:太原师范学院教学改革项目(JGLX1831)。

摘  要:按照从简单到复杂的认知规律,用辅助方程组法,通过讨论最简单的线性方程组,证明了“系数矩阵为行最简形的同型同解线性方程组的增广矩阵相等”.与传统的线性相关性方法比较,本文的方法是构造性的.作为推论,证明了“线性方程组同解的充要条件是增广矩阵行等价”;简化了“矩阵的行最简形矩阵的唯一性”的证明.According to the cognitive law from simple to complex,through discussing the simplest system of linear equations by means of the method of auxiliary system of equations,it is proved that if systems of linear equations of the same type with row reduced echelon coefficient matrix have the same solution,then their augmented matrix is equal.Compared with the method of traditional linear correlation,the method here is constructive.As consequences,it is proved that systems of linear equations have the same solution if and only if their augmented matrix is row equivalent,and the proof of the uniqueness of the row reduced echelon matrix for a matrix is simplified.

关 键 词:行最简形矩阵 矩阵的行等价 线性方程组的同解 

分 类 号:O151.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象