Volterra核优化的SRC人脸识别算法  被引量:1

Face Recognition Based on SRC with Volterra Kernels Optimization

在线阅读下载全文

作  者:焦阳[1] 赵嵩[2] JIAO Yang;ZHAO Song(School of Energy and Intelligence Engineering,Henan University of Animal Husbandry and Economy,Zhengzhou 450046,China;School of Intelligent Engineering,Zhengzhou University of Aeronautics,Zhengzhou 450046,China)

机构地区:[1]河南牧业经济学院能源与智能工程学院,河南郑州450046 [2]郑州航空工业管理学院智能工程学院,河南郑州450046

出  处:《信阳师范学院学报(自然科学版)》2022年第1期141-144,共4页Journal of Xinyang Normal University(Natural Science Edition)

基  金:河南省重点研发与推广专项项目(212102210530)。

摘  要:为了提高稀疏表示分类算法对属于同一方向不同类别样本的分类准确率,提出了一种基于Volterra核优化的稀疏表示分类算法。该算法首先将原始的人脸图像分成不重叠的小块,并利用Volterra核映射到高维空间。在训练阶段遵循费舍尔标准,根据最大化类间距离和最小化类内距离来定义目标函数,从而获得优化Volterra核。与其他方法在ORL和YaleB标准数据集上进行对比实验,结果表明,采用Volterra核优化的SRC人脸识别分类方法在对样本的分类精度上提高了3%。In order to improve the classification accuracy of sparse representation classification algorithm for samples belonging to the same direction but different categories,a sparse representation classification algorithm based on Volterra kernel optimization is proposed.Firstly,the original face images are divided into nonoverlapping blocks and mapped into high-dimensional space by Volterra kernel.In the training phase,Fisher criterion is followed,and the objective function is defined according to maximizing the distance between classes and minimizing the distance within classes to obtain the optimized Volterra kernel.The experimental results on ORL and YaleB standard datasets show that the classification accuracy of the SRC face recognition classification method based on Volterra kernel optimization is improved by 3%.

关 键 词:人脸识别 VOLTERRA核 稀疏表示分类 分类方法 

分 类 号:TU457[建筑科学—岩土工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象