检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周天晗 吴凡 陆凯宁 赵玲倩 潘钢[2] 彭友 张煜 周力 罗定存 ZHOU Tian-han;WU Fan;LU Kai-ning(The Fourth School of Clinical Medicine,Zhejiang Chinese Medical University,Hangzhou310006,China;不详)
机构地区:[1]浙江中医药大学第四临床医学院,浙江杭州310053 [2]浙江大学医学院附属杭州市第一人民医院肿瘤外科,浙江杭州310006
出 处:《中国实用外科杂志》2021年第12期1394-1399,共6页Chinese Journal of Practical Surgery
基 金:浙江省卫生健康科技计划(N0.2022KY939);杭州市医药卫生科技项目(No.A20200432);研究生拔尖创新人才培育计划(浙中医大办[2021]108号)。
摘 要:目的构建基于机器学习算法的甲状腺乳头状癌右喉返神经后方淋巴结(LN-prRLN)转移预测模型,并验证其预测效果。方法回顾性分析2014年3月至2019年7月在浙江大学医学院附属杭州市第一人民医院肿瘤外科接受手术的907例甲状腺乳头状癌病人。分别纳入性别、年龄、肿瘤大小、被膜侵犯、多灶性等临床病理资料。根据时间序列,分为训练组(n=595)和验证组(n=312)。运用Logistic回归及分类树、随机森林、梯度提升法、支持向量机等机器学习算法进行特征变量选择,并构建LN-prRLN转移的预测模型。结果分类树模型的受试者操作特征曲线(ROC)曲线下面积为0.654,敏感度为33.00%,特异度为97.78%,准确率为86.89%;随机森林模型的ROC曲线下面积为0.753,敏感度为57.00%,特异度为100.00%,准确率为92.77%;支持向量机模型的ROC曲线下面积为0.604,敏感度为27.00%,特异度为83.19%,准确率为86.39%;梯度提升法的ROC曲线下面积为0.873,敏感度为72.00%,特异度为89.49%,准确率为87.90%。结论LN-prRLN转移预测模型对甲状腺乳头状癌右喉返神经后方淋巴结转移具有良好的预测效果,其中梯度提升法具有较高的诊断效能。Objective To construct and verify a prediction model based on machine learning algorithm for the metastasis of lymph node posterior to right recurrent laryngeal nerve(LN-prRLN)in papillary thyroid carcinoma(PTC).Methods A retrospective survey was conducted on 907 PTC patients who underwent surgery in the Department of Surgical Oncology of Hangzhou First People’s Hospital from March 2014 to July 2019.The clinicopathological data of gender,age,tumor size,membranous invasion and multifocal tumor were included in this study.According to the time series,they were divided into training set(n=595)and validation set(n=312).Logistic regression and machine learning algorithms such as classification tree,random forest,gradient boosting machine and support vector machine were used to select characteristic variables,and the prediction model of metastasis of LN-prRLN was constructed.Results The area under the receiver operating characteristic curve(ROC)of the classification tree model was 0.654,the sensitivity,specificity,accuracy were 33.00%,97.78%,86.89%respectively;The area under ROC curve of the random forest model was 0.753,the sensitivity,specificity,accuracy were 57.00%,100.00%,92.77%respectively.The area under ROC curve of support vector machine model was 0.604,the sensitivity,specificity,accuracy were 27.00%,83.19%,86.39%respectively.The area under the ROC curve of gradient boosting machine was 0.873,the sensitivity,specificity,accuracy were 72.00%,89.49%,87.90%respectively.Conclusion The prediction model of metastasis LN-prRLN has a good prediction effect.The gradient boosting machine has the highest diagnostic efficiency.
关 键 词:右喉返神经后方淋巴结 甲状腺乳头状癌 机器学习算法 预测模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38