检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊林瑞 韩振南[1] 李延峰[1] XIONG Lin-rui;HAN Zhen-nan;LI Yan-feng(College of Mechanical Engineering and Transportation,Taiyuan University of Technology,Shanxi Taiyuan 030024,China)
机构地区:[1]太原理工大学机械工程与运载学院,山西太原030024
出 处:《机械设计与制造》2022年第1期52-55,61,共5页Machinery Design & Manufacture
基 金:国家自然科学基金项目(50775157);太原理工大学研究生核心课程建设基金项目。
摘 要:为了提高齿轮故障信号特征提取时处理稀疏性差信号的能力,设计了一种应用稀疏度自适应匹配追踪(SAMP)算法对齿轮故障信号进行处理方法。通过对仿真的齿轮故障信号数学模型和齿轮出现点蚀时的实验数据分析表明:经过SAMP处理后齿轮啮合频率以及半频和转频更加明显,边频带也更加突出,干扰成分降到最低。证明SAMP算法能够提取主要齿轮故障特征信息,有效降低噪声影响。相对于OMP算法处理齿轮故障信息,进过SAMP算法处理的故障信号,故障特征更加明显,且重构信号精度更高,表明SAMP算法重构故障信号相对于正交匹配追踪算法能够更好的提取主要齿轮故障特征。In order to improve the ability of processing sparsity difference signals during feature extraction of gear fault signals,a Sparsity Adaptive Matching and Tracking(SAMP)Algorithm is designed to process gear fault signals.Through the simulation of the mathematical model of the gear fault signal and the analysis of the experimental data of the pitting corrosion of the gear,the results show that:after the treatment of SAMP,the gear meshing frequency,half frequency and rotation frequency are more obvious,the side frequency band is more prominent,and the interference component is reduced to the minimum.It is proved that the SAMP algorithm can extract the main gear fault characteristic information and effectively reduce the influence of noise.Compared with OMP algorithm for processing gear fault information,the fault features of the fault signals processed by SAMP algorithm are more obvious,and the reconstruction signal accuracy is higher,indicating that the reconstruction fault signals of SAMP algorithm can better extract the main gear fault features compared with the orthogonal matching tracking algorithm.
关 键 词:SAMP 特征提取 自适应稀疏度 重构信号 故障特征
分 类 号:TH16[机械工程—机械制造及自动化] TH113.1
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28