基于传感器非视觉信息的无人机目标朝向识别  被引量:1

Target Orientation Recognition Approach of UAV Based on Non-Visual Information from Sensors

在线阅读下载全文

作  者:王宾[1] 韩群勇[1] WANG Bin;HAN Qun-yong(Department of Electronic Engineering,Zhangzhou Institute of Technology,Zhangzhou 363000,Fujian,China)

机构地区:[1]漳州职业技术学院电子工程学院,福建漳州363000

出  处:《兰州文理学院学报(自然科学版)》2022年第1期48-53,共6页Journal of Lanzhou University of Arts and Science(Natural Sciences)

摘  要:很多传统方法仅利用视觉外观特征不足以实现理想的无人机面向人体评估结果.针对此问题,结合非视觉信息,提出一种对目标身体朝向进行实时估计的传感器信息融合方法.首先,对每种人体朝向训练一组视觉外观模型,每一种模型对应一系列无人机采集的遥测数据非视觉信息;其次,使用隐性动态条件随机域提取传感器非视觉信息间的交互信息,并利用Akaike信息准则对提取特征进行评估选择;然后,利用提取的高辨识度特征匹配每种视觉外观模型,得到目标朝向结果;最后,根据识别的目标结果自动调整无人机面向目标的正面.实验结果表明,与传统方法相比,所提方法的目标朝向识别准确率明显提高,达到90%左右.Many traditional methods only use low-level visual appearance features,which are not enough to achieve ideal human body evaluation results for UAV.Aiming at the problem,a sensor information fusion method for real-time estimation of target body orientation is proposed based on non-visual information.Firstly,a set of visual appearance models are trained for each human orientation,and each model corresponds to a series of non-visual information of telemetry data collected by UAV.Then,hidden dynamic conditional random fields are used to extract non interactive visual information between the sensor information,and Akaike information criterion is adopted to evaluate the selection of feature extraction.And each visual appearance model is matched by the extracted high recognition feature,and the target orientation results are obtained.Finally,according to the target recognition results,the front of the UAV is automatically adjusted.The experimental results show that compared with the traditional method,the proposed method has significantly improved the accuracy of target orientation recognition,reaching about 90%.

关 键 词:无人机 目标朝向识别 隐动态条件随机域 传感器 特征选择 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象