检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑智捷[1] Jeffrey ZHENG(School of Software,Yunnan University,Kunming 650091,China)
机构地区:[1]云南大学软件学院,昆明650091
出 处:《计算机科学》2022年第1期9-16,共8页Computer Science
基 金:国家自然科学基金(62041213)。
摘 要:高庆狮院士于2006年发表《新模糊集合论基础》专著,为消解模糊逻辑系列悖论进行逻辑理论基础探索;并于2009年在科学出版社发表《统一语言学基础》专著,为多语言计算前沿构造理论基础支撑。这两部专著在他的创新理论基础研究中为传世瑰宝。在悼念高庆狮院士逝世10周年之际,文中利用最新向量逻辑——变值体系,来展现在高老师的研究方向中元知识系统体系架构建模的最新进展。从向量逻辑出发,综合共轭结构、元知识模型以及各类新型处理机制,在现代逻辑和数学中判定一个复杂系统是否包含经典逻辑悖论,对保证该类系统能否存活起到核心判别作用。从分类和判别解析的角度,悖论可以分为两类模式:逻辑悖论和语义悖论。利用共轭环构造4条色带,系统化地消解莫比乌斯环展现的单面特性,展示一系列几何拓扑逻辑等学科内蕴的逻辑悖论,通过共轭环结构,形成完备的消解体系。相关的结构包括易经、微分几何、微分几何拓扑、整体变分泛函优化等复杂动态系统。随着系统化地消解莫比乌斯拓扑几何逻辑悖论,针对复杂知识系统体系架构,描述适配的相关模块及其子模块的体系架构,从经典逻辑出发,系统地建立经典逻辑、有限自动机、图灵机、冯纽曼体系。利用消解莫比乌斯悖论的向量逻辑、共轭结构和变值体系,系统化地构造量子图灵机、多元复函数向量机、复杂智能化系统体系架构以及统一语言学分析系统等,为新型元知识体系构造新型复杂智能化系统开辟道路。Professor Q.S.GAO(Chinese Science Academician)published New Fuzzy Set Theoryin 2006 to explore possible solutions removing paradoxes in Fuzzy logic.In 2009,he published Foundation of Unified Linguistics from Science Press to provide bases of theoretical supports on computational multiple linguistics.The two monographs are the topmost invaluable diamonds in his creative academic activities.In memory of professor Q.S.Gao passed away for 10 years,it is my great pleasure to use new vector logic-variant construction,to describe the newest development on meta knowledge construction following advanced researches of professor Gao’s legacy.Starting from vector logic,conjugate structure,meta knowledge model and other advanced mechanisms,it is a critical condition to use modern logic and mathematics to guarantee a complex system to be a consistentdynamic one without paradoxes,to avoid if the complex system contains any logic paradox.From a classified and adjudicate viewpoint,paradoxes are divided into two categories:logic paradoxes,and semantic paradoxes.Using conjugate ring,it systematically resolves single surface property of Mobius ring to be four colored bands that support possible for this construction to resolve a series of intrinsic logicparadoxes in geometry,topology and logic.Conjugate ring provides a complete solution to resolve the Mobius type of paradoxes in general.Corresponding structures include many abstract systems,such as I Ching,differential geometry,geometric topology,global variation and optimization etc.Associated with resolving the Mobius type of paradoxes on topology,geometry and logic,it is natural for meta knowledge model to establish relevant key modules to support complex natural/artificial knowledge systems.Starting from classic logic,typical components are listed,such as classical logic,finite automata,Turing machine and Von Neumann architecture.Applying vector logic construction,conjugate structure and variant construction as key components with paradox-free properties,it is convenient to es
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3