检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒲实 赵卫东 PU Shi;ZHAO Wei-dong(School of Software,Fudan University,Shanghai 200433,China;Shanghai Key Laboratory of Data Science,Shanghai 200433,China)
机构地区:[1]复旦大学软件学院,上海200433 [2]上海市数据科学重点实验室,上海200433
出 处:《计算机科学》2022年第1期89-94,共6页Computer Science
基 金:国家自然科学基金(61671157);教育部哲学社会科学研究重大课题攻关项目(19JZD010)。
摘 要:科研网络是一类动态变化的异构信息网络,科研网络上的社区检测能挖掘出学术主体的所属社区并发现蕴含于科研社区中的洞察。既有的社区检测算法忽略了科研网络的动态特征和科研主体间的特殊关系,未将科研社区内部的紧密程度和社区间的关系纳入社区检测算法中予以优化,对此提出了一种基于动态科研网络表示学习的社区检测算法DANE-CD。首先基于科研网络自编码器学习科研网络中学术主体的表示向量,然后创新性地在表示学习过程中融入了基于模块度和团队断裂带两个维度的聚类优化,最后基于堆栈自编码器构造了动态科研网络表示学习模型,同时完成了对科研网络的社区检测。在DBLP和HEP-TH两个真实科研数据集上进行了实验,实验结果显示算法在准确率、归一化互信息和模块度3个指标上优于既有科研社区检测算法,可以较好地完成动态科研网络下的社区检测任务。Academic network is a kind of dynamic heterogeneous information network.Community detection on the academic network can dig out the communities of academic subjects and discover the insights contained in the community structure.The existing community detection algorithms ignore the dynamics of the academic network and the special relationship between academic subjects and do not optimize the closeness of the academic community and the relationship between academic communities.This paper proposes a community detection algorithm called DANE-CD based on dynamic academic network representation learning.Firstly,an autoencoder is adopted to represent the academic subject in the academic network.Secondly,the clustering optimization based on modularity and team faultlines is innovatively integrated into the representation learning process.Finally,a dynamic academic network representation model is constructed based on the stacked autoencoder,together with the completion of community detection in the dynamic academic network.Extensive experiments on two real-world academic datasets(DBLP and HEP-TH)demonstrate that DANE-CD is superior to the baseline methods and can detect the academic communities effectively.
关 键 词:科研网络 动态网络 社区检测 异构网络 聚类优化
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.20.233.31