检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖丽丽 张东[1] LIAO Lili;ZHANG Dong(School of Physics and Technology,Wuhan University,Wuhan 430072,China)
机构地区:[1]武汉大学物理科学与技术学院,湖北武汉430072
出 处:《中国医学物理学杂志》2022年第1期32-37,共6页Chinese Journal of Medical Physics
基 金:国家重点研发计划973项目(2011CB707900)。
摘 要:为了提高超声图像质量,解决传统去噪算法在抑制散斑噪声和保留超声图像纹理特征方面的难题,提出一种基于卷积神经网络的超声图像散斑去噪算法DSCNN(De-speckling CNN)。本文提出的算法利用卷积神经网络强大的拟合能力来学习从超声图像到其相应的高质量图像的复杂映射,同时,通过改进损失函数的方式来减少去噪过程中纹理信息的损失和细节的模糊。不同于以往简单地假设超声散斑噪声为乘性噪声,本文利用基于超声图像采集模型和散斑噪声形成模型的模拟超声成像技术为去噪模型生成更贴合真实超声图像的训练数据,解决深度学习方法训练数据匮乏以及在临床上无法获得与超声图像空间配准作为标签的无噪声图像的难题。通过与其他具有代表性的超声图像去噪算法比较,经DSCNN去噪后的超声图像无论在视觉效果还是图像质量评价指标上都取得了更好的结果,其中SSIM达到0.8569,在文中所有方法中最高。In order to improve the quality of ultrasound images and solve the problems of how to maintain the balance between suppressing speckle noise and retaining the texture features in ultrasound images,a de-speckling algorithm based on convolutional neural network(DSCNN)is proposed.The proposed algorithm utilizes the powerful fitting ability of CNN to learn the complex mapping from the ultrasound image to its corresponding high-quality image.Meanwhile,it reduces the loss of texture information and the blurred details during denoising by advanced loss function.Different from previous assumption that the speckle noise is a kind of multiplicative noise,the simulated ultrasound imaging technology based on the ultrasound image acquisition model and the speckle noise formation model is used to generate more realistic ultrasound images which are taken as the training data for denoising model,thus solving the problems of lack of training data and overcoming difficulties in obtaining a noise-free image which is used as a label in spatial registration with the ultrasound image.Compared with the images denoised by other typical denoising algorithms,the ultrasound image denoised by DSCNN wins higher scores both in visual effect and image quality assessment,and SSIM even reaches 0.8569,which is highest among all methods discussed in the study.
关 键 词:散斑噪声 卷积神经网络 纹理信息 模拟超声成像技术
分 类 号:R318[医药卫生—生物医学工程] TP391[医药卫生—基础医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.106.222