检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zoran Nenadic
机构地区:[1]Department of Biomedical Engineering,University of California,Irvine,CA 92697,USA [2]Department of Electrical Engineering and Computer Science,University of California,Irvine,CA 92697,USA
出 处:《Control Theory and Technology》2021年第4期516-528,共13页控制理论与技术(英文版)
基 金:This work was partially supported by the National Science Foundation(award#1646275);the National Institute of Health(project#R01HD095457).
摘 要:In this review article, we present more than a decade of our work on the development of brain–computer interface (BCI)systems for the restoration of walking following neurological injuries such as spinal cord injury (SCI) or stroke. Most ofthis work has been in the domain of non-invasive electroencephalogram-based BCIs, including interfacing our system witha virtual reality environment and physical prostheses. Real-time online tests are presented to demonstrate the ability ofable-bodied subjects as well as those with SCI to purposefully operate our BCI system. Extensions of this work are alsopresented and include the development of a portable low-cost BCI suitable for at-home use, our ongoing eforts to develop afully implantable BCI for the restoration of walking and leg sensation after SCI, and our novel BCI-based therapy for strokerehabilitation.
关 键 词:Brain-computer interfaces NEUROPROSTHESIS Spinal cord injury PARAPLEGIA GAIT
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.7.205