检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔志强 CUI Zhi-qiang(Department of Electrical and Electronic Engineering, Chengde Petroleum College,Chengde 067000, Hebei, China)
机构地区:[1]承德石油高等专科学校电气与电子系,河北承德067000
出 处:《承德石油高等专科学校学报》2021年第6期43-46,71,共5页Journal of Chengde Petroleum College
摘 要:电能质量扰动信号的分类识别是进行电能质量扰动分析和治理的重要前提。提出一种应用小波变换与神经网络相结合的暂态电能质量扰动分类方法。首先,针对暂态电能质量扰动信号的特点,选择db4小波变换来获得各层上的能量值,以提取不同扰动信号的特征参量。再通过确定适当的BP神经网络模型,对输入的扰动特征参量进行分类识别。仿真结果表明,该方法可以有效区分几种暂态电能质量扰动事件,且识别率较高。The classification and identification of power quality disturbance signal is an important prerequisite for power quality disturbance analysis and control.This paper presents a classification method of transient power quality disturbances based on wavelet transform and neural network.Firstly,according to the characteristics of transient power quality disturbance signal,db4 wavelet transform is selected to obtain the energy value of each layer so as to extract the characteristic parameters of different disturbance signals.Secondly,by determining the appropriate BP neural network model,the input disturbance characteristics are classified and identified.Simulation results show that the method can distinguish several kinds of transient power quality disturbance events effectively and has achieved high recognition ratio.
关 键 词:暂态电能质量 db4小波变换 BP神经网络 扰动分类
分 类 号:TM711[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38