检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕冰泽 王国涛[1,2] 汪国强[1] 李硕 Lü Bingze;WANG Guotao;WANG Guoqiang;LI Shuo(College of Electronic Engineering,Heilongjiang University,Harbin 150080,China;Electrical and Electronic Reliability Research Institute,Harbin Institute of Technology,Harbin 150001,China)
机构地区:[1]黑龙江大学电子工程学院,哈尔滨150080 [2]哈尔滨工业大学电器与电子可靠性研究所,哈尔滨150001
出 处:《黑龙江大学自然科学学报》2021年第6期748-756,共9页Journal of Natural Science of Heilongjiang University
基 金:国家自然科学基金资助项目(31570492)。
摘 要:传统多余物微粒材质识别算法在判断金属和非金属微粒时,误判现象比较严重。本文将参数优化的梯度提升决策树算法(Gradient boosting decision tree,GBDT)应用于多余物材质识别。特征选择方面,在原有的脉冲面积、脉冲左右对称度、脉冲上下对称度、脉冲持续时间、脉冲上升占比、能量密度、脉冲占比、波峰系数、面积占比、频谱质心、均方频率、方差、过零点率和均方根差14个特征基础上,利用小波变换提取出了能量系数作为新的特征值,并建立新的样本特征集。然后结合机器学习方法训练得到基于GBDT多余物材质识别模型。为了使分类器性能达到最优,对其进行超参数调优。采用贝叶斯优化库中的分布式异步超参数优化模块(Hyperopt),并结合树形窗密度评估器(Parzen)可以获得模型的最佳优化参数。经过与K近邻(K-nearest neighbor classification,KNN)和支持向量机分类模型(Support vector machine,SVM)进行对比,结果表明,采用参数优化的GBDT算法对金属和非金属微粒具有很好的识别效果,能够有效提高其分类性能。Traditional algorithms for recognizing the material of loose particles have serious misjudgments when judging metals and non-metals.The parameter-optimized gradient boosting decision tree algorithm(GBDT)was applied to the recognition of redundant materials.In terms of feature selection,based on original 14 features of the original pulse area,pulse left-right symmetry,pulse up-and-down symmetry,pulse duration,pulse rise percentage,energy density,pulse percentage,crest factor,area percentage,spectral centroid,mean square frequency,variance,zero-crossing rate,and root mean square error,wavelet transform was used to extract the energy coefficient as a new feature value,and a new sample feature set was established,and then combined with machine learning methods to train a GBDT-based redundant material recognition model.In order to optimize the performance of the classifier,hyperparameter tuning was performed on it.The Hyperopt tool optimized by Bayesian was used,combined with the tree-shaped Parzen estimator to obtain the most suitable parameters.The results indicate that the parameter-optimized GBDT algorithm has a good recognition effect on metal and non-metal particles,and can improve the classification performance effectively by comparing with KNN and support vector machine classification models.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62