检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京大学经济学院,北京100000 [2]平安银行战略发展部,广东深圳518000
出 处:《统计与决策》2022年第1期145-148,共4页Statistics & Decision
摘 要:深度学习(Deep Learning)算法的发展和成熟为高频、量化交易提供了全新的技术手段。文章将卷积神经网络(CNN)和时序卷积网络(TCN)相结合,利用CNN卷积核学习限价指令簿(LOB)空间结构上的预测信息,用TCN学习LOB时间维度上的价格相关性。同时,利用2019年5年期国债期货所有合约的level 2行情数据对"CNN+TCN"模型进行检验,发现该模型能够提供非常稳定的样本外精度,而且模型表现得稳定地、显著地优于随机森林、支持向量机等已经在业界大量应用的成熟机器学习模型,并且训练速度大为提高。
关 键 词:“CNN+TCN”模型 限价指令簿 国债期货 高频交易
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.255.189