“CNN+TCN”模型在高频国债期货市场走势预测中的应用  被引量:2

在线阅读下载全文

作  者:李骏琪 杨垚立 

机构地区:[1]北京大学经济学院,北京100000 [2]平安银行战略发展部,广东深圳518000

出  处:《统计与决策》2022年第1期145-148,共4页Statistics & Decision

摘  要:深度学习(Deep Learning)算法的发展和成熟为高频、量化交易提供了全新的技术手段。文章将卷积神经网络(CNN)和时序卷积网络(TCN)相结合,利用CNN卷积核学习限价指令簿(LOB)空间结构上的预测信息,用TCN学习LOB时间维度上的价格相关性。同时,利用2019年5年期国债期货所有合约的level 2行情数据对"CNN+TCN"模型进行检验,发现该模型能够提供非常稳定的样本外精度,而且模型表现得稳定地、显著地优于随机森林、支持向量机等已经在业界大量应用的成熟机器学习模型,并且训练速度大为提高。

关 键 词:“CNN+TCN”模型 限价指令簿 国债期货 高频交易 

分 类 号:F832.5[经济管理—金融学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象