检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹春林 陶重犇[1,2] 李华一 高涵文 Cao Chunlin;Tao Chongben;Li Huayi;Gao Hanwen(School of Electronics and Information Engineering,Suzhou University of Science and Technology,Suzhou,Jiangsu 215009,China;Tsinghua University Suzhou Automotive Research Institute,Suzhou,Jiangsu 215134,China)
机构地区:[1]苏州科技大学电子与信息工程学院,江苏苏州215009 [2]清华大学苏州汽车研究院,江苏苏州215134
出 处:《光电工程》2021年第11期20-31,共12页Opto-Electronic Engineering
基 金:国家自然科学基金资助项目(61801323,61972454);中国博士后科学基金资助项目(2021M691848);苏州市科技项目基金资助项目(SS2019029);江苏省高校自然科学基金资助项目(19KJB110021,20KJB520018)。
摘 要:针对实例分割算法在进行轮廓收敛时,普遍存在目标遮挡增加轮廓处理的时间以及降低检测框的准确性的问题。本文提出一种实时实例分割的算法,在处理轮廓中增加段落匹配、目标聚合损失函数和边界系数模块。首先对初始轮廓进行分段处理,在每一个段落内进行分配局部地面真值点,实现更自然、快捷和平滑的变形路径。其次利用目标聚合损失函数和边界系数模块对存在目标遮挡的物体进行预测,给出准确的检测框。最后利用循环卷积与Snake模型对匹配过的轮廓进行收敛,对顶点进行迭代计算得到分割结果。本文算法在COCO、Cityscapes、Kins等多个数据集上进行评估,其中COCO数据集上取得32.6%mAP和36.3 f/s的结果,在精度与速度上取得最佳平衡。During the instance segmentation for contour convergence,it is a general problem that target occlusion increases the time for contour processing and reduces the accuracy of the detection box.This paper proposes an algorithm for real-time instance segmentation,adding fragment matching,target aggregation loss function and boundary coefficient modules to the processing contour.Firstly,fragment matching is performed on the initial contour formed by evenly spaced points,and local ground truth points are allocated in each fragment to achieve a more natural,faster,and smoother deformation path.Secondly,the target aggregation loss function and the boundary coefficient modules are used to predict the objects in the presence of object occlusion and give an accurate detection box.Finally,circular convolution and Snake model are used to converge the matched contours,and then the vertices are iteratively calculated to obtain segmentation results.The proposed method is evaluated on multiple data sets such as Cityscapes,Kins,COCO,et al,among which 30.7 mAP and 33.1 f/s results are obtained on the COCO dataset,achieving a compromise between accuracy and speed.
关 键 词:实例分割 目标检测 SNAKE模型 目标遮挡 初始轮廓
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170