检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]石河子大学机械电气与工程学院,新疆石河子832003
出 处:《江苏农业科学》2022年第2期206-212,共7页Jiangsu Agricultural Sciences
基 金:国家自然科学基金(编号:61763042)。
摘 要:针对传统方法对番茄穴盘苗重叠幼叶图像分割精度较低、背景剔除困难的问题,提出一种基于U-Net模型和模糊C均值聚类(FCM算法)相结合的图像分割方法。首先用ExRG法对图像的背景进行剔除,得到待分割幼叶的主体区域,对图像进行预处理。其次建立数据集,训练网络模型,用预训练的U-Net模型分割幼叶主体区域,提取其过渡区域;同时用FCM算法分割幼叶主体区域,提取其过渡区域。然后结合FCM算法分割得到的过渡区域和U-Net模型分割得到的过渡区域,得到重叠叶片的最终分割结果。最后,为了得到精准的评估结果,将重新连接的过渡区域进行填充,并与其他文献所述的算法进行对比分析。结果表明,所提出的基于U-net模型和FCM算法对穴盘苗幼叶轮廓分割的结果更加准确,泛化性更强。证明对番茄幼苗叶片图像分割的有效性,为幼苗生长状况的检测研究提供了支持。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.21.235