检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜涛 李跃勋 陆赫林[1] 章晖[1] DU Tao;LI Yue-xun;LU He-lin;ZHANG Hui(College of Electrical and Information Engineering,Yunnan Minzu University,Kunming 650500,China)
机构地区:[1]云南民族大学电气信息工程学院,云南昆明650500
出 处:《云南民族大学学报(自然科学版)》2022年第1期121-130,共10页Journal of Yunnan Minzu University:Natural Sciences Edition
基 金:国家自然科学基金(11964042).
摘 要:拓扑不变量如陈数、Z_(2)拓扑不变量等是表征拓扑非平庸固体系统的拓扑物相的特征量,其来源于固体周期边界条件下的能带即体能带所具有的不为零的Berry相.在开边界条件下,具有拓扑非平庸物相的系统的有限尺度能谱将出现位于能隙中的能带,并且这些能带可能对应着一个边界模.推广了一维Su-Schrieffer-Heeger模型,通过计算其拓扑不变量即Zak相,得到了其包含几个不同拓扑相的拓扑相图.在开边界条件下,研究了这些拓扑相对应的有限尺度能谱以及系统处于这些物相时能谱能隙中的能带所对应的边界模,进而采用有限尺度能谱和其能隙中的能带所对应的边界模表征了这些不同的拓扑相.The topological invariant,e.g.Chern number or Z_(2) topological invariant characterizes the non-trivial properties of a topological phase in solids.It essentially stems from the non-zero Berry phase possessed by the bulk energy band of a solid under the periodic boundary condition.Under the open boundary condition,the energy spectrum of topological phase in the finite-sized lattice has bands in the energy gap,and these bands in the gap can correspond to the edge modes.In this study an extension of the one-dimensional Su-Schrieffer-Heeger was investigated.Its topological phase diagrams which possess several topologically non-trivia and trivial phases were obtained from the calculation of the topological invariant(in fact,under the periodic boundary condition).Under the open boundary condition,the energy spectra and the edge modes which correspond to the bands in gaps of these topologically non-trivial or trivial phase were obtained.These energy spectra and the edge modes distinguished the different topologically non-trivial phases and the topological transitions were indicated from the changes of the spectra and the patterns of edge modes.
关 键 词:Su-Schrieffer-Heeger模型 有限尺度能谱 边界模 拓扑不变量 拓扑相变
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.113