检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马月红 孔梦瑶 MA Yuehong;KONG Mengyao(College of Electrical and Electronic Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, Hebei, China)
机构地区:[1]石家庄铁道大学电气与电子工程学院,河北石家庄050043
出 处:《兵工学报》2021年第12期2664-2674,共11页Acta Armamentarii
基 金:国家自然科学基金青年科学基金项目(51807124)。
摘 要:基于深度学习的目标检测算法已成为合成孔径雷达(SAR)图像目标检测任务的主流。深层网络通常具有大量参数,运行速度不能满足实时要求,难以在资源受限的设备(如移动端)上部署。考虑到对模型实时性和可移植性的要求,对双阶段目标检测算法快速区域卷积神经网络进行轻量化改进,比较不同改进方法对算法速度与精度的影响。结合SAR图像的特点,优化轻量化模型,与单阶段目标检测算法的单脉冲多盒检测网络对比。仿真实验结果表明,改进轻量化模型在保持原有精度水平下,模型占用内存和算法运算量大大减少,可有效满足SAR图像目标检测的实时性要求。The target detection algorithms based on deep learning has become the mainstream of target detection in synthetic aperture radar images.Deep network algorithm often has a large number of parameters and don't run fast enough to meet real-time requirements,making it difficult to deploy on resource-constrained devices such as mobile terminal.Considering the requirements of real-time performance and portability of the model,Faster-RCNN for the two-stage target detection algorithm was improved to compare the influence of different improved methods on the speed and accuracy of algorithm.The lightweight model was optimized in combination with the characteristics of synthetic aperture radar(SAR)images,and finally compared with the single shot multibox detector for one-stage target detection algorithm.The experimental results show that the speed of the improved lightweight model is greatly improved while maintaining the original accuracy level,which can effectively meet the real-time requirements of SAR image target detection.
关 键 词:目标检测 快速卷积神经网络 合成孔径雷达 轻量化算法 实时性
分 类 号:TN957.512[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171