基于数据可视化的复杂系统信号时序识别方法  

Time Series Feature Recognition of Complex System Signals Based on Data Visualization

在线阅读下载全文

作  者:姜婕 杨威[2] 冯俊涛 姜帅 JIANG Jie;YANG Wei;FENG Juntao;JIANG Shuai(Mechanical,Electronic and Control Engineer,Beijing Jiao Tong University,Beijing 100044,China;Beijing Aerospace Automatic Control Institute,Beijing 100854,China;School of Software,Beihang University,Beijing 100191,China)

机构地区:[1]北京交通大学机械与电子控制工程学院,北京100044 [2]北京航天自动控制研究所,北京100854 [3]北京航天航空大学软件学院,北京100191

出  处:《计算机测量与控制》2022年第1期252-257,共6页Computer Measurement &Control

摘  要:针对复杂系统研发及运行过程中产生的大量信号可以表征系统运行的时序健康状态这一特性,提出了一种基于数据可视化及卷积神经网络(convolutional neural networks,CNN)智能识别的时序特征识别方法;该方法使用数据可视化技术将信号的时序特征映射至图像,通过训练好的特征识别模型对信号可视化图像进行时序特征的识别,可实现系统运行时的实时智能状态监测;选取了三种典型信号的正常及异常特征,通过模型构建及测试分析,验证该方法对复杂系统信号的时序特征有良好的识别效果,可应用于对时序要求较高的复杂系统进行状态监测及故障诊断。In view of the fact that a large number of signals generated in the process of complex system development and operation can represent the time sequence health state of system operation,a time sequence feature recognition method based on data visualization and convolutional neural networks(CNN) intelligent recognition is proposed.This method is used by the data visualization technology to map the time sequence features of the signal to the image,and uses the trained feature recognition model to recognize the time sequence features of the signal visualization image,which can realize the real-time intelligent state monitoring of the system.The normal and abnormal characteristics of three typical signals are selected.Through model construction and test analysis,it is verified that the method has good recognition effect on the time sequence characteristics of complex system signals,it can be applied to condition monitoring and fault diagnosis of complex systems with high time sequence requirements.

关 键 词:数据可视化 卷积神经网络 Inception-v3模型 时序 特征识别 

分 类 号:T391.4[一般工业技术] V57[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象