检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王平 吴文波 马毅华 许江 宗智诚 WANG Ping;WU Wenbo;MA Yihua;XU Jiang;ZONG Zhicheng(Shanghai Shentie Information Engineering Co.Ltd.,Shanghai 200071,China)
出 处:《铁路计算机应用》2022年第1期22-26,共5页Railway Computer Application
基 金:中国铁路上海局集团有限公司科研项目(2018179)。
摘 要:进入"后疫情时期",铁路客流正逐步回升,但呈现较大波动,面对铁路提质增效的任务,准确预测客流量愈发重要。文章采用极端梯度提升(XGBoost,eXtreme Gradient Boosting)模型,以新冠肺炎疫情、天气和日期属性作为影响因素,选取上海站2016年1月1日—2020年7月27日客流量数据作为训练集和验证集,利用5折交叉验证和网格搜索(Grid Search)得到最优参数,并对上海站2020年7月28日—2021年5月17日的客流量进行预测,预测拟合度R;为0.812,总体预测效果较好。Entering the post-pandemic era, railway passenger flow is gradually rising, but there is a large fluctuation.Facing the task of improving the quality and operation efficiency of railway, accurate prediction of passenger flow is becoming more and more important. In this paper, XGBoost model was adopted for passenger flow forecast with COVID-19 pandemic, weather, and date attributes as influencing factors. Meanwhile, passenger flow data of Shanghai Railway Station from January 1, 2016 to July 27, 2020 were selected as training set and validation set and the optimal parameters of the XGBoost-based passenger flow forecast model were obtained by using 5-fold cross-validation and Grid Search. Then, the passenger flow of Shanghai Railway Station from July 28, 2020 to May 17, 2021 was predicted using this model. The result of the prediction attained a fitting degree of 0.812,indicating that the overall prediction effect is good.
关 键 词:客流量预测 后疫情时代 XGBoost k折交叉验证 网格搜索
分 类 号:U293.13[交通运输工程—交通运输规划与管理] TP39[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13