基于Hessian正则化和非负约束的低秩表示子空间聚类算法  被引量:4

Low-rank representation subspace clustering method based on Hessian regularization and non-negative constraint

在线阅读下载全文

作  者:范莉莉 卢桂馥 唐肝翌 杨丹 FAN Lili;LU Guifu;TANG Ganyi;YANG Dan(School of Computer and Information,Anhui Polytechnic University,Wuhu Anhui 241000,China)

机构地区:[1]安徽工程大学计算机与信息学院,安徽芜湖241000

出  处:《计算机应用》2022年第1期115-122,共8页journal of Computer Applications

基  金:国家自然科学基金资助项目(61976005);安徽省高等教育提升计划省级自然科学研究一般项目(TSKJ2016B01)。

摘  要:针对低秩表示(LRR)子空间聚类算法没有考虑数据局部结构,在学习中可能会造成局部相似信息丢失的问题,提出了一种基于Hessian正则化和非负约束的低秩表示子空间聚类算法(LRR-HN),用来探索数据的全局结构和局部结构。首先,利用Hessian正则化良好的推测能力来保持数据的局部流形结构,使数据局部拓扑结构的表达能力更强;其次,考虑到获得的系数矩阵往往有正有负,而负值往往没有实际意义的特点,引入非负约束来保证模型解的有效性,使其在数据局部结构描述上更有意义;最后,通过最小化核范数寻求数据全局结构的低秩表示,从而更好地聚类高维数据。此外,利用自适应惩罚的线性交替方向法设计了一种求解LRR-HN的有效算法,并在一些真实数据集上,采用正确率(AC)和归一化互信息(NMI)对所提出的算法进行了评估。在ORL数据集上聚类数目为20时的实验中,LRR-HN与LRR算法相比,AC和NMI分别提高了11%和9.74%;与自适应低秩表示(ALRR)算法相比,AC和NMI分别提高了5%和1.05%。实验结果表明,LRR-HN与现有的一些算法相比,AC和NMI均有较大的提升,有较好的聚类性能。Focusing on the issue that the Low-Rank Representation(LRR)subspace clustering algorithm does not consider the local structure of the data and may cause the loss of local similar information during learning,a Low-Rank Representation subspace clustering algorithm based on Hessian regularization and Non-negative constraint(LRR-HN)was proposed to explore the global and local structure of the data.Firstly,the good speculative ability of Hessian regularization was used to maintain the local manifold structure of the data,so that the local topological structure of the data was more expressive.Secondly,considering that the obtained coefficient matrix often has positive and negative values,and the negative values often have no practical significance,non-negative constraints were introduced to ensure the effectiveness of the model solution and make it more meaningful in the description of the local structure of the data.Finally,the low-rank representation of the global structure of the data was sought by minimizing the nuclear norm,so as to cluster high-dimensional data better.In addition,an effective algorithm for solving LRR-HN was designed by using the linearized alternating direction method with adaptive penalty,and the proposed algorithm was evaluated by ACcuracy(AC)and Normalized Mutual Information(NMI)on some real datasets.In the experiments with clusters number 20 on ORL dataset,compared with LRR algorithm,LRR-HN has the AC and NMI increased by 11%and 9.74%respectively,and compared with Adaptive Low-Rank Representation(ALRR)algorithm,LRR-HN has the AC and NMI increased by 5%and 1.05%respectively.Experimental results show that the LRR-HN has great improvement in AC and NMI compared with some existing algorithms,and has the excellent clustering performance.

关 键 词:子空间聚类 Hessian正则化 非负约束 低秩表示 流形学习 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象