基于图卷积网络和门控循环单元的多站点气温预测模型  被引量:9

Multi-site temperature prediction model based on graph convolutional network and gated recurrent unit

在线阅读下载全文

作  者:马栋林[1] 马司周 王伟杰 MA Donglin;MA Sizhou;WANG Weijie(School of Computer and Communication,Lanzhou University of Technology,Lanzhou Gansu 730050,China)

机构地区:[1]兰州理工大学计算机与通信学院,兰州730050

出  处:《计算机应用》2022年第1期287-293,共7页journal of Computer Applications

基  金:国家自然科学基金资助项目(51668043)。

摘  要:时空预测任务在神经科学、交通、气象等领域应用广泛。气温预测作为典型的时空预测任务,需要挖掘气温数据中固有的时空特征。针对现有气温预测算法存在预测误差大、空间特征提取不充分的问题,提出一种基于图卷积网络和门控循环单元的气温预测(GCN-GRU)模型。首先,使用重新分配权重和多阶近邻连接方式修正图卷积网络(GCN),以有效挖掘气象数据独特的空间特征;然后,将门控循环单元(GRU)中每个循环单元的矩阵乘法替换成图卷积操作,并将所有的循环单元串联起来构成图卷积门控层;接着,使用图卷积门控层搭建网络主体结构来提取数据的时空特征;最后,通过一个全连接的输出层输出气温预测结果。通过与GRU和长短期记忆网络(LSTM)等单一模型对比,GCN-GRU模型的平均绝对误差(MAE)分别减小了0.67和0.83;与切比雪夫图卷积和长短期记忆网络结合的预测模型(Cheb-LSTM)、图卷积网络和长短期记忆网络结合的预测模型(GCN-LSTM)对比,平均绝对误差分别减小了0.36和0.23。Spatio-temporal prediction task is widely applied in neuroscience,transportation,meteorology and other fields.As a typical spatio-temporal prediction task,temperature prediction needs to dig out the inherent spatio-temporal characteristics of temperature data.Aiming at the problems of large prediction error and insufficient spatial feature extraction in the existing temperature prediction algorithms,a temperature prediction model based on Graph Convolutional Network and Gated Recurrent Unit(GCN-GRU)was proposed.Firstly,the methods of weight redistribution and multi-order neighbor connection were used to modify Graph Convolutional Network(GCN)in order to effectively mine the unique spatial characteristics of the meteorological data.Secondly,the matrix multiplication of each recurrent unit in the Gated Recurrent Unit(GRU)was replaced by graph convolution operation,and all the recurrent units were connected in series to form a graph convolutional gating layer.Then,the graph convolutional gating layer was used to build the main network structure to extract the spatio-temporal characteristics of the data.Finally,the temperature prediction results were output through a fully connected output layer.Compared with the single models such as Gated Recurrent Unit(GRU)and Long Short-Term Memory(LSTM),GCN-GRU had the Mean Absolute Error(MAE)reduced by 0.67 and 0.83 respectively;compared with the prediction model combined with Chebyshev graph convolution and Long Short-Term Memory(Cheb-LSTM)and the prediction model combined with Graph Convolutional Network and Long Short-Term Memory(GCN-LSTM),the proposed model had the MAE reduced by 0.36 and 0.23 respectively.

关 键 词:时空预测 气温预测 多站点 时空特征 图卷积网络 门控循环单元 

分 类 号:TP389.1[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象