检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐胜超 XU Sheng-chao(School of Date Science,Guangzhou Huashang College,Guangzhou 511300,China)
机构地区:[1]广州华商学院数据科学学院,广东广州511300
出 处:《计算机技术与发展》2022年第1期85-90,共6页Computer Technology and Development
基 金:广州华商学院校内导师制科研项目资助(2020HSDS04,2021HSDS15);国家自然科学基金项目(青年基金)(F030203 No.61403219)。
摘 要:近年来,高维数据算法在诸如机器学习领域以及模式识别当中有着十分广泛的应用。降维算法的目的是为了揭示出在高维数据空间中样本数据的固有的组成特性,关注于寻找原始数据集特征表示中有价值的信息。相邻区域选择问题对流形学习降维算法的性能改进至关重要。因此,该文提出一种流形学习降维算法中的新动态邻域选择方法Mod-HLLE(modified Hessian locally linear embedding)。该方法针对Hessian布局线嵌入方法HLLE进行了考察,Mod-HLLE算法是针对高维数据的局部线性嵌入降维算法的改进。Mod-HLLE主要通过计算每个数据点的局部相邻区域参数的方式来完成测量距离和欧几里德距离的评测,再通过动态的相邻区域的尺寸大小来选择新的局部相邻区域。Mod-HLLE在非噪声干扰和噪声干扰情况下,对两类典型3D高维数据集进行降维测试。实验结果表明,Mod-HLLE可以获得很好的几何直观效果,在性能和稳定性方面都优于常见的降维算法,对其他高维数据降维算法的改进也具有很好的参考价值。In recent years,high-dimensional data algorithms have been widely used in machine learning and pattern recognition.The aim of dimensionality reduction is to reveal the intrinsic composition of the distribution of samples in the initiate high-dimensional space and find the valuable information in the original data set feature representation.The neighborhood selection is quite important to improve the performance of manifold learning dimensionality reduction algorithm.Therefore,we propose a dynamic neighborhood selection approach for manifold learning dimensionality reduction algorithm call Mod-HLLE(modified Hessian locally linear embedding).It is used to investigate the Hessian layout line embedding method(HLLE).Mod-HLLE is an improvement of local linear embedding dimensionality reduction algorithm for high dimensional data.Mod-HLLE mainly evaluates the measurement distance and Euclidean distance by calculating the local adjacent area parameters of each data point,and then selects the new local adjacent area by the size of the dynamic adjacent area.Two kinds of 3D dimensionality data sets which are often unevenly distributed are adopted in noise case and without noise case.Experiment shows that Mod-HLLE can obtain ideal geometric intuitive effect,which is superior to common dimensional reduction algorithms in terms of performance and stability,and also has a good reference value for improving other high-dimensional data dimensional reduction algorithms.
关 键 词:流形学习 黑塞局部线性嵌入 数据挖掘 降维算法 相邻区域
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63