多种非线性因素下电磁轴承转子系统运动稳定性分析  

Dynamic Stability Analysis of Magnetic Bearing Rotor System under Various Nonlinear Factors

在线阅读下载全文

作  者:滕汉卿 穆然[1] TENG Hanqing;MU Ran(Hunan Railway Professional Technology College,Zhuzhou Hunan 412001)

机构地区:[1]湖南铁道职业技术学院,湖南株洲412001

出  处:《河南科技》2021年第26期54-58,共5页Henan Science and Technology

基  金:2019年湖南省教育厅科学研究项目“电磁轴承转子系统双参数非线性动力学特性研究”(19C1212)。

摘  要:本文以经典的Jeffcott转子系统为基础建立了电磁轴承转子系统模型,在综合考虑电磁力、质量偏心力等非线性因素的基础上建立系统运动微分方程,通过四阶龙格库塔法对系统微分方程进行数值仿真计算,借助分岔图、Poincaré截面图、相图等探讨此类转子系统随系统参数变化的分岔特性及演化过程,并判断系统的周期运动稳定性。结果表明,该转子系统在加速初期有短暂的跳跃震颤现象,后经倍化分岔进入混沌运动状态,并以周期8—周期4—周期2—周期1运动的逆倍化分岔形式退出混沌运动,在后续加速过程中,系统动力学特性越来越复杂。In this paper, the model of magnetic bearing rotor system was established based on the classic Jeffcott rotor system, the motion differential equation of the system was established based on the nonlinear factors such as electromagnetic force and mass eccentricity force, through fourth-order Runge-Kutta method to numerically simulate the differential equations of the system. The bifurcation characteristics and evolution process of the rotor system with the change of system parameters were discussed by bifurcation diagram, Poincaré section diagram and phase diagram,judge the periodic motion stability of the system. The results show that the rotor system has a short jump tremor at the initial stage of acceleration, then enters chaotic motion state through doubling bifurcation, and exits the chaotic motion in the form of inverse doubling bifurcation of period 8-period 4-period 2-period 1. In the subsequent acceleration process, the dynamic characteristics of the system become more and more complex.

关 键 词:电磁轴承转子系统 分岔 混沌 

分 类 号:TH133.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象