一种改进的差分进化算法与电解电容器参数辨识  被引量:5

An improved differential evolution algorithm and parameter identification of electrolytic capacitors

在线阅读下载全文

作  者:薛田良[1] 王一诺 曾阳阳 Xue Tianliang;Wang Yinuo;Zeng Yangyang(College of Electrical Engineering and New Energy,China Three Gorges University,Yichang 443002,China;Hubei Qingjiang Hydroelectric Development Limited Liability Company,Yichang 443000,China)

机构地区:[1]三峡大学电气与新能源学院,宜昌443002 [2]湖北清江水电开发有限责任公司,宜昌443000

出  处:《电子测量技术》2021年第22期56-61,共6页Electronic Measurement Technology

基  金:国家自然科学基金(61603212)项目资助。

摘  要:针对差分进化算法在参数辨识时容易陷入局部最优、辨识精度需要优化等问题,改进的算法在原有选择、变异、交叉操作的基础上,引入随机游走策略,加强了算法的局部搜索能力,提高了种群的多样性。以等效串联电阻(ESR)和等效阻抗(Z)的实测值与预测值为基础构造目标函数,采用改进算法优化目标函数,对两个复杂程度不同的电解电容器模型进行参数辨识,得到参数辨识结果以及ESR和阻抗Z预测值。通过仿真表明,改进的算法是有效的,并且在经典模型下改进的算法预测精度始终维持在5%优于传统算法的14%。In order to solve the problems of differential evolution algorithm,such as easily falling into the local optimum and the identification accuracy needs to be optimized,the improved algorithm introduces the random walk strategy based on the original selection,mutation and cross operation,which enhances the local search ability of the algorithm and improves the diversity of the population.Based on the measured and predicted values of equivalent series resistance(ESR)and equivalent impedance(Z),the objective function is constructed,and the improved algorithm is used to optimize the objective function.The parameters of two electrolytic capacitor models with different complexity are identified,and the results of parameter identification and the predicted values of ESR and impedance Z are obtained.Simulation results show that the improved algorithm is effective,and the prediction accuracy of the improved algorithm under the classical model is always 5%better than that of the traditional algorithm’s 14%,which can improve the monitoring accuracy of the electrolytic capacitor.

关 键 词:改进的差分进化算法 随机游走 等效串联电阻 等效阻抗 分数阶 电解电容器 

分 类 号:TN7[电子电信—电路与系统] TMS3[电气工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象