检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:申洪涛 刘宝铭 任鹏 张洋瑞 张超 赵俊鹏 王飞[2] SHEN Hongtao;LIU Baoming;REN Peng;ZHANG Yangrui;ZHANG Chao;ZHAO Junpeng;WANG Fei(Marketing Service Center,State Grid Hebei Electric Power Co.,Ltd.,Shijiazhuang 050022,China;North China Electric Power University,Baoding 071003,China)
机构地区:[1]国网河北省电力有限公司营销服务中心,河北石家庄050022 [2]华北电力大学,河北保定071003
出 处:《电力系统保护与控制》2022年第3期164-173,共10页Power System Protection and Control
基 金:国家电网公司科技项目资助(SGHEYX00SCJS2000037)。
摘 要:近年来,表后分布式光伏迅猛发展,其不可观特性给需求响应集群基线负荷(Aggregated baseline load,ABL)估计带来巨大挑战。为提升高渗透分布式光伏下ABL的估计精度,提出了一种基于辨识解耦的ABL估计方法。首先,提出了一种基于天气状态驱动特征的分布式光伏用户辨识方法,将光伏用户与非光伏用户解耦分离。其次,根据两类用户净负荷的特点,分别建立估计模型:针对光伏用户建立了天气类型分类估计模型,针对非光伏用户建立了温度与负荷的分段线性回归模型。最后,将两类用户的估计值相加,得到最终ABL估计值。仿真结果表明,与直接估计法和其他分类估计方法相比,所提方法在平均绝对百分比误差指标上平均降低42.07%,在标准均方根误差指标上平均降低23.93%。In recent years,behind-the-meter distributed photovoltaic(PV)systems have developed rapidly,and their unobservable characteristics pose huge challenges to demand response aggregated baseline load(ABL)estimation.To improve the ABL estimation accuracy under high penetration of distributed PVs,an ABL estimation method based on identification and decoupling is proposed.First,a PV user identification and decoupling method based on weather state-driven features is proposed.This separates PV users from non-PV users.Secondly,estimation models are established respectively according to the characteristics of two types of users'net load:the estimation model based on weather type classification is established for PV users,and the piecewise linear regression model of temperature and load is established for non-PV users.Finally,a final ABL estimation is obtained by adding the estimated values of the two types of users.The simulation results show that,compared with the direct estimation methods and other classification estimation methods,the proposed method has an average decrease of 42.07%on the mean absolute percentage error(MAPE)and an average decrease of 23.93%on the normalized root mean square error(NRMSE).
分 类 号:TM714[电气工程—电力系统及自动化] TM615
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49