检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闫军[1] 常乐 封丽华 YAN Jun;CHANG Le;FENG Lihua(Gansu Institute of Logistics and Information Technology,Lanzhou Jiaotong University,Lanzhou 730070,China;Institute of Mechanical and Electrical Technology,Lanzhou Jiaotong University,Lanzhou 730070,China)
机构地区:[1]兰州交通大学甘肃省物流与信息技术研究院,兰州730070 [2]兰州交通大学机电技术研究所,兰州730070
出 处:《计算机工程与应用》2022年第4期283-289,共7页Computer Engineering and Applications
基 金:甘肃省自然科学基金(148RJZA049)。
摘 要:在人到货订单拣选系统中,客户下达订单后将由拣货员穿梭仓库进行拣选。在仓库的拣选设备容量和拣货人员数量有限制的条件下,研究在线订单分批优化问题,预防订单过早或延迟服务,以最短的时间完成拣货任务。构建考虑最小拣货路径的在线订单分批规划模型,以最小化平均有效订单服务时间。提出一种基于规则的启发式算法来求解模型,其中包含k-means聚类算法和遗传算法,分别处理订单的分批和拣选路径的规划。最后利用具体算例进行模拟计算,实验结果表明,与传统固定时间窗启发式算法相比,提出的基于规则的启发式算法能够显著提高拣货效率。In the person-to-goods order picking system,after the customer places the order,the picker shuttles the warehouse to pick it.This paper studies the online order batching optimization problem under the condition that the capacity of the warehouse’s picking equipment and the number of picking personnel are limited,so as to prevent premature order or delayed service to complete the picking task in the shortest time.This paper constructs an online order batch planning model considering the minimum picking path to minimize the average effective order service time,and proposes a rulebased heuristic algorithm to solve the model,which includes k-means clustering algorithm and genetic algorithm to process separately orders planning of batching and picking paths.Finally,a specific example is used for simulation calculation.The experimental results show that compared with the traditional fixed time window heuristic algorithm,the proposed rule-based heuristic algorithm can significantly improve the efficiency of picking.
关 键 词:在线订单拣选 订单分批 拣选路径 聚类算法 遗传算法
分 类 号:F253.4[经济管理—国民经济] TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.206.183