基于改进的DECA三维人脸重建  

在线阅读下载全文

作  者:杨豪 程磊[1] YANG Hao;CHENG Lei

机构地区:[1]沈阳理工大学信息科学与工程学院,辽宁沈阳110159

出  处:《信息技术与信息化》2022年第1期72-75,共4页Information Technology and Informatization

摘  要:目前DECA模型在人脸重建方面取得了比较好的成果,但是对于光线影响较大的室外人脸图进行训练时,效率不高且总体性能一般,针对此问题,提出了一种基于DECA的改进算法。首先将原来的SGD优化方法改进为Adam优化器;其次加入正则化损失,提高重建后的效果,并以此来达到避免过度拟合等情况,提升算法的泛化能力。实验结果表明,改进后的DECA相比于原基础上效率平均提升了5%,并且重建效果得到了很大的改善,在一定程度上改善了性能与效率不足的问题。

关 键 词:人脸重建 Adam优化器 DECA模型 泛化能力 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象