基于串联质谱标签技术筛选免疫介导性脱髓鞘疾病诊断与鉴别诊断的生物标志物  被引量:1

Potential biomarkers for the diagnosis and differential diagnosis of immune-mediated demyelinating diseases screened by tandem mass spectrometry technology

在线阅读下载全文

作  者:丁耀威 史一君 Rasha 李国歌 姜文灿 郑光辉[1] 张国军[1] Ding Yaowei;Shi Yijun;Rasha;Li Guoge;Jiang Wencan;Zheng Guanghui;Zhang Guojun(Laboratory of Beijing Tiantan Hospital,Capital Medical University,NMPA Key Laboratory for Quality Control of in vitro Diagnostics,Beijing Engineering Research Center of Immunological Reagents Clinical Research,Beijing 100071,China)

机构地区:[1]首都医科大学附属北京天坛医院实验诊断中心,国家药监局体外诊断试剂质量控制重点实验室,北京市免疫试剂临床工程技术研究中心,北京100071

出  处:《中华检验医学杂志》2022年第1期36-44,共9页Chinese Journal of Laboratory Medicine

基  金:北京市医院管理中心重点医学专业发展计划(ZYLX202108)。

摘  要:目的采用串联质谱标签(TMT)联合液相色谱串联质谱(LC-MS/MS)筛选免疫介导性脱髓鞘疾病诊断与鉴别诊断的潜在生物标志物。方法选择首都医科大学附属北京天坛医院2020年1月至2021年1月收治的20例脱髓鞘疾病患者(脱髓鞘组),包括10例吉兰-巴雷综合征(GBS)患者(GBS亚组)与10例多发性硬化(MS)患者(MS亚组)。以及10例神经系统非炎性疾病(NND)患者(NND组),通过TMT蛋白质组学技术筛选出脱髓鞘组与NND组、GBS亚组与MS亚组间具有表达差异的蛋白质(差异倍数>2或<0.5且差异有统计学意义),借助String数据库对组间差异蛋白质所参与的通路进行基因本体(GO)富集分析和京都基因和基因组百科全书(KEGG)富集分析。另选择同期就诊的80例脱髓鞘疾病患者(脱髓鞘病验证组)以及40名健康体检者(健康对照组)用于血脂一般指标的回顾性分析,脱髓鞘病验证组包括40例GBS患者(GBS验证组)及40例MS患者(MS验证组)。绘制受试者工作特征(ROC)曲线评价血脂一般指标对脱髓鞘病诊断及GBS与MS间鉴别诊断的价值。结果经TMT蛋白质组学技术检测出362种蛋白质,脱髓鞘组与NND组比较共有101个差异蛋白,GBS亚组与MS亚组比较共有45个差异蛋白。GO富集分析结果显示,脱髓鞘组与NND组相比,富集度前5条通路为巨噬细胞集落刺激因子及受体复合物、胆固醇输入负调控、极低密度脂蛋白颗粒清除负调控、含甘油三酯丰富的脂蛋白颗粒重构、胆固醇逆向转运。GBS亚组与MS组相比,富集度前5条通路为高密度脂蛋白颗粒受体结合、极低密度脂蛋白颗粒重塑负调控、胆固醇输入负调控、极低密度脂蛋白颗粒清除负调控、中等密度脂蛋白颗粒。KEGG富集分析显示,脱髓鞘组与NND组的差异蛋白富集到8条通路,为磷脂酰肌醇3激酶-蛋白激酶B信号通路、补体和凝固级联反应、细胞外基质及其受体交互、金黄色葡萄球菌感染、胆固醇Objective To screen the potential biomarkers for the diagnosis and differential diagnosis of immune-mediated demyelinating diseases by tandem mass tags(TMT)and liquid chromatography-tandem mass spectrometry(LC-MS/MS)technology.Methods Twenty patients with demyelinating diseases(demyelinating group)and 10 patients with noninflammatory neurological diseases(NND group)from Beijing Tiantan Hospital affiliated to Capital Medical University from January 2020 to January 2021 were enrolled in this study.The demyelinating group included 10 patients with Guillain-Barre syndrome(GBS subgroup)and 10 patients with multiple sclerosis(MS subgroup).TMT proteomics was used to screen out the different protein expression patterns between the demyelinating group and the NND group and between the GBS subgroup and the MS subgroup(difference>2 or<0.5 and with statistical significance),and String database was used to perform gene ontology(GO)analysis and Kyoto encyclopedia of gene and genomes(KEGG)analysis on the pathways involved in the differently expressed proteins between the groups.In addition,80 demyelinating patients(demyelinating diseases validation group)and 40 healthy subjects(healthy control group)were selected for retrospective analysis of general lipid indexes.The demyelinating diseases validation group included 40 GBS patients(GBS validation group)and 40 MS patients(MS validation group).Receiver operating characteristic(ROC)curve was obtained to evaluate the value of general lipid indexes for the diagnosis of demyelinating diseases and the differential diagnosis between GBS and MS groups.Results A total of 362 proteins were detected by TMT proteomics.There were 101 differentially expressed proteins between the demyelinating group and the NND group,and 45 differentially expressed proteins between the GBS group and the MS group.Compared with the NND group,GO enrichment analysis showed that the top five enrichment pathways in the demyelinating group were macrophage colony stimulating factor and receptor complex,negative regul

关 键 词:脱髓鞘疾病 串联质谱法 色谱法 液相 蛋白质组学 脑脊液 

分 类 号:R744.5[医药卫生—神经病学与精神病学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象