检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李俊伯 秦品乐[1,2,3] 曾建潮[1,2,3] 李萌[1,2,3] LI Junbo;QIN Pinle;ZENG Jianchao;LI Meng(Shanxi Medical Imaging and Data Analysis Engineering Research Center(North University of China),Taiyuan Shanxi 030051,China;College of Data Science,North University of China,Taiyuan Shanxi 030051,China;Shanxi Medical Imaging Artificial Intelligence Engineering Technology Research Center(North University of China),Taiyuan Shanxi 030051,China)
机构地区:[1]山西省医学影像与数据分析工程研究中心(中北大学),太原030051 [2]中北大学大数据学院,太原030051 [3]山西省医学影像人工智能工程技术研究中心(中北大学),太原030051
出 处:《计算机应用》2022年第2期584-591,共8页journal of Computer Applications
基 金:山西省工程技术研究中心建设项目(201805D121008)。
摘 要:计算机断层扫描(CT)三维重建技术通过上采样体数据来提高三维模型质量,减轻模型中的锯齿状边缘、条纹状伪影和不连续表面等现象,从而提高临床医学中疾病诊断的准确率。针对以往CT三维重建后模型仍然不够清晰的问题,提出一种基于超分辨率网络的CT三维重建算法。网络模型为具有双重损失的优化学习纵轴超分辨率重建网络(DLRNet),通过单轴超分辨率进行腹部CT三维重建。网络末端引入优化学习模块,且除计算基准图与超分辨率图像的损失外,还计算网络内部粗略重建图像与基准图的损失,这样一来,优化学习与双重损失能使网络产生更接近于基准图的结果。随后在特征提取模块引入空间特征金字塔池化和通道注意力机制,加权细化学习了不同粗细以及规模不一的血管组织的特征。最后使用动态生成卷积核组的方法进行上采样使得单一网络模型可应对不同缩放因子的上采样任务。实验结果表明,相较于通道注意力的方法RCAN(Residual Channel Attention Network),所提网络模型在2、3、4倍缩放因子下的峰值信噪比(PSNR)平均提高0.789 dB。可见所提网络模型有效提升了CT三维模型的质量,一定程度上恢复了血管组织的连续细节特征,同时具备了实用性。Computed Tomography(CT)three-dimensional reconstruction technique improves the quality of three-dimensional model by upsampling volume data,and reduces the jagged edges,streak artifacts and discontinuous surface in the model,so as to improve the accuracy of disease diagnosis in clinical medicine.A CT three-dimensional reconstruction algorithm based on super-resolution network was proposed to solve the problem that the model after CT three-dimensional reconstruction remains unclear enough in the past.The network model is a Double Loss Refinement Network(DLRNET),and the three-dimensional reconstruction of abdominal CT was performed by uniaxial super-resolution.The optimization learning module was introduced at the end of the network model,and besides the calculation of the loss between the baseline image and super-resolution image,the loss between the roughly reconstructed image in the network model and the baseline image was also calculated.In this way,with the force of optimization learning and double loss,the results closer to the baseline image were produced by the network.Then,spatial pyramid pooling and channel attention mechanism were introduced into the feature extraction module to learn the features of vascular tissues with different thickness degrees and scales.Finally,the upsampling method was used to dynamically generate the convolution kernel set,so that a single network model was able to complete the upsampling tasks with different scaling factors.Experimental results show that compared with Residual Channel Attention Network(RCAN),the proposed network model improves the Peak Signal-to-Noise Ratio(PSNR)by 0.789 dB on average under 2,3,and 4 scaling factors,showing that the network model effectively improves the quality of CT three-dimensional model,recovers the continuous detail features of vascular tissues to some extent,and has practicability.
关 键 词:深度学习 三维重建 超分辨率 计算机断层扫描 优化学习
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117