基于教与学优化的可变卷积自编码器的医学图像分类方法  被引量:5

Variable convolutional autoencoder method based on teaching-learning-based optimization for medical image classification

在线阅读下载全文

作  者:李薇[1,2] 樊瑶驰 江巧永 王磊[2] 徐庆征 LI Wei;FAN Yaochi;JIANG Qiaoyong;WANG Lei;XU Qingzheng(School of Computer Science and Engineering,Xi’an University of Technology,Xi’an Shaanxi 710048,China;Shaanxi Key Laboratory for Network Computing and Security Technology(Xi’an University of Technology),Xi’an Shaanxi 710048,China;College of Information and Communication,National University of Defense Technology,Xi’an Shaanxi 710106,China)

机构地区:[1]西安理工大学计算机科学与工程学院,西安710048 [2]陕西省网络计算与安全技术重点实验室(西安理工大学),西安710048 [3]国防科技大学信息通信学院,西安710106

出  处:《计算机应用》2022年第2期592-598,共7页journal of Computer Applications

摘  要:针对传统手工方法优化卷积神经网络(CNN)参数时存在耗时长、不准确,以及参数设置影响算法性能等问题,提出一种基于教与学优化(TLBO)的可变卷积自编码器(CAE)算法。该算法设计了可变长度的个体编码策略,从而快速构建CAE结构,并堆叠CAE为一个CNN;此外,充分利用优秀个体的结构信息来引导算法朝着更有希望的区域搜索,从而提高算法性能。实验结果表明,所提算法在解决医学图像分类问题时,分类精度达到89.84%,高于传统CNN和同类型神经网络。该算法通过优化CAE结构和堆叠CNN解决医学图像分类问题,有效提高了医学图像分类性能。In order to solve the problems such as high time cost,inaccuracy and influence of parameter setting on algorithm performance when optimizing parameters of Convolutional Neural Network(CNN)by traditional manual methods,a variable Convolutional AutoEncoder(CAE)method based on Teaching-Learning-Based Optimization(TLBO)was proposed.In the algorithm,a variable-length individual encoding strategy was designed to quickly construct the CAE structure,and stack CAEs to a CNN.In addition,the excellent individual structure information was fully utilized to guide the algorithm to search the regions with more possibility,thereby improving the algorithm performance.Experimental results show that the classification accuracy of the proposed algorithm achieves 89.84%when solving medical image classification problems,which is higher than those of traditional CNN and similar neural networks.The proposed algorithm solves the medical image classification problems by optimizing the CAE structure and stacking CNN,and effectively improves the classification accuracy of medical image classification.

关 键 词:卷积自编码器 卷积神经网络 教与学优化 演化算法 医学图像 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象