检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹建荣[1,2] 朱亚琴 张玉婷 吕俊杰 杨红娟[1,2] CAO Jianrong;ZHU Yaqin;ZHANG Yuting;LYU Junjie;YANG Hongjuan(School of Information and Electrical Engineering,Shandong Jianzhu University,Jinan Shandong 250101,China;Shandong Provincial Key Laboratory of Intelligent Buildings Technology(Shandong Jianzhu University),Jinan Shandong 250101,China)
机构地区:[1]山东建筑大学信息与电气工程学院,济南250101 [2]山东省智能建筑技术重点实验室(山东建筑大学),济南250101
出 处:《计算机应用》2022年第2期622-630,共9页journal of Computer Applications
基 金:山东省重点研发计划项目(2019GSF111054);山东省重大科技创新工程(2019JZZY010120)。
摘 要:针对跌倒检测算法中存在网络计算量大和类跌倒行为难以区分的问题,提出一种基于关节点特征的跌倒检测算法。首先,在目前先进的CenterNet算法基础上提出了深度可分离卷积CenterNet(DSC-CenterNet)关节点检测算法,从而在减少骨干网络计算量的同时准确检测人体关节点并获取关节点坐标;然后,基于关节点位置和人体先验知识来提取可充分表达跌倒行为的空间特征和时间特征作为关节点特征;最后,把关节点特征向量输入全连接层,并经Sigmoid分类器输出跌倒或非跌倒两种类别,从而实现人体目标的跌倒检测。实验结果表明,所提算法在UR Fall Detection数据集上对不同状态变化下跌倒检测的平均准确率达到98.00%,区分类跌倒行为的准确率达到98.22%,跌倒检测速度为18.6 frame/s。与原CenterNet结合关节点特征跌倒检测的算法相比,DSC-CenterNet结合关节点特征算法的跌倒检测速度提升了22.37%,提高后的速度可有效满足视频监控下人体跌倒检测任务的实时性。该算法能有效提高跌倒检测速度并对人体跌倒状态进行准确检测,且进一步验证了基于关节点特征的跌倒检测算法在视频跌倒行为分析中的可行性与高效性。In order to solve the problems of large amount of network computation and difficulty in distinguishing falling-like behaviors in fall detection algorithms,a fall detection algorithm based on joint point features was proposed.Firstly,based on the current advanced CenterNet algorithm,a Depthwise Separable Convolution-CenterNet(DSC-CenterNet)joint point detection algorithm was proposed to accurately detect human joint points and obtain joint point coordinates while reducing the amount of backbone network computation.Then,based on the joint point coordinates and prior knowledge of the human body,the spatial and temporal features expressing the fall behavior were extracted as the joint point features.Finally,the joint point feature vector was input into the fully connected layer and processed by Sigmoid classifier to output two categories:fall or non-fall,thereby achieving the fall detection of human targets.Experimental results on UR Fall Detection dataset show that the proposed algorithm has the average accuracy of fall detection under different state changes reached 98.00%,the accuracy of distinguishing falling-like behaviors reached 98.22%and the fall detection speed of 18.6 frame/s.Compared with the algorithm of the original CenterNet combining with joint point features,the algorithm of DSC-CenterNet combining with joint point features has the average detection accuracy increased by 22.37%.The improved speed can effectively meet the realtime requirement of the human fall detection tasks under surveillance video.This algorithm can effectively increase fall detection speed and accurately detect the fall state of human body,which further verifies the feasibility and efficiency of fall detection algorithm based on joint point features in the video fall behavior analysis.
关 键 词:跌倒检测 深度学习 CenterNet算法 关节点检测 关节点特征
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200