检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪豪 吉邦宁 何刚[1] 俞文心 WANG Hao;JI Bangning;HE Gang;YU Wenxin(School of Computer Science and Technology,Southwest University of Science and Technology,Sichuan 621010,P.R.China)
机构地区:[1]西南科技大学计算机科学与技术学院,四川绵阳621010
出 处:《生物医学工程学杂志》2022年第1期166-174,184,共10页Journal of Biomedical Engineering
基 金:四川省科技厅项目(2020YFS0454,2020YFS0318,2020YFG0430,2020YFS0307,2019YFS0155,2019YFS0146)。
摘 要:作为确定病灶与诊断的重要基础,医学图像分割已成为生物医学领域中极其重要的热门研究领域之一,其中基于全卷积神经网络和U型网络(U-net)等神经网络的医学图像分割算法得到越来越多研究人员的重视。目前,医学图像分割算法应用于直肠癌诊断的研究报道较少,且已有的研究对直肠癌的分割结果精度不高。本文提出了一种结合图像裁剪和预处理方法的编码—解码卷积网络模型。该模型在U型网络的基础上,借鉴残差网络思想,用残差块代替传统的卷积块,有效避免了梯度消失的问题。此外,本文还采用了图像增广的方法提高了所提模型的泛化能力,并在"泰迪杯"数据挖掘挑战赛所提供的数据集进行测试。测试结果表明,本文提出的基于残差块的改进U型网络模型结合图像裁剪预处理,可以大大提高直肠癌的分割精度,得到的戴斯系数在验证集上达到0.97。As an important basis for lesion determination and diagnosis,medical image segmentation has become one of the most important and hot research fields in the biomedical field,among which medical image segmentation algorithms based on full convolutional neural network and U-Net neural network have attracted more and more attention by researchers.At present,there are few reports on the application of medical image segmentation algorithms in the diagnosis of rectal cancer,and the accuracy of the segmentation results of rectal cancer is not high.In this paper,a convolutional network model of encoding and decoding combined with image clipping and pre-processing is proposed.On the basis of U-Net,this model replaced the traditional convolution block with the residual block,which effectively avoided the problem of gradient disappearance.In addition,the image enlargement method is also used to improve the generalization ability of the model.The test results on the data set provided by the"Teddy Cup"Data Mining Challenge showed that the residual block-based improved U-Net model proposed in this paper,combined with image clipping and preprocessing,could greatly improve the segmentation accuracy of rectal cancer,and the Dice coefficient obtained reached0.97 on the verification set.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] R735.37[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28