检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jiacheng Jiao Haiwei Pan Chunling Chen Tao Jin Yang Dong Jingyi Chen
机构地区:[1]the College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China [2]the School of Software,Tsinghua University,Beijng 100084,China
出 处:《Tsinghua Science and Technology》2022年第1期103-113,共11页清华大学学报(自然科学版(英文版)
基 金:supported by the National Natural Science Foundation of China (Nos. 62072135, 61672181)。
摘 要:Lesion detection in Computed Tomography(CT) images is a challenging task in the field of computer-aided diagnosis.An important issue is to locate the area of lesion accurately.As a branch of Convolutional Neural Networks(CNNs),3D Context-Enhanced(3DCE) frameworks are designed to detect lesions on CT scans.The False Positives(FPs) detected in 3DCE frameworks are usually caused by inaccurate region proposals,which slow down the inference time.To solve the above problems,a new method is proposed,a dimension-decomposition region proposal network is integrated into 3DCE framework to improve the location accuracy in lesion detection.Without the restriction of "anchors" on ratios and scales,anchors are decomposed to independent "anchor strings".Anchor segments are dynamically combined in accordance with probability,and anchor strings with different lengths dynamically compose bounding boxes.Experiments show that the accurate region proposals generated by our model promote the sensitivity of FPs and spend less inference time compared with the current methods.
关 键 词:lesion detection Computed Tomography(CT) dimension-decomposition 3D context computer-aided diagnosis
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30