Detection and recognition of veterinary drug residues in beef using hyperspectral discrete wavelet transform and deep learning  

在线阅读下载全文

作  者:Rongchang Jiang Jingxin Shen Xinran Li Rui Gao Qinghe Zhao Zhongbin Su 

机构地区:[1]College of Electrical and Information,Northeast Agricultural University,Harbin 150030,China [2]Shandong Academy of Agricultural Machinery Sciences,Jinan 250100,China [3]Harbin Big Data Center,Harbin 150030,China

出  处:《International Journal of Agricultural and Biological Engineering》2022年第1期224-232,共9页国际农业与生物工程学报(英文)

基  金:China Central Government to Support the Reform and Development Fund of Heilongjiang Local Universities(Grant No.2020GSP15).

摘  要:A fast,non-destructive recognition method for veterinary drug residues in beef was proposed to mitigate the laborious sample preparation and long detection times associated with conventional chemical detection techniques.Control beef samples free of veterinary drug residues and four groups of beef sprayed with relevant concentrations of metronidazole,ofloxacin,salbutamol,and dexamethasone under ambient conditions were analyzed by 400-1000 nm hyperspectral imaging followed by multiplicative scatter correction preprocessing.Data dimension reduction was performed using Competitive Adaptive Reweighted Sampling(CARS),Principal Component Analysis(PCA),and Discrete Wavelet Transform(DWT)based on Haar,db3,bior1.5,sym5,and rbio1.3 wavelet basis functions.Treated data were subjected to Convolutional Neural Network(CNN),Multilayer Perceptron(MLP),Random Forest(RF),and Support Vector Machine(SVM)modelling.CNN,MLP,SVM,and RF algorithms achieved overall accuracies of 91.6%,88.6%,87.6%,and 86.2%,respectively,when combined with DWT(wavelet basis functions and numbers of transform layers being Haar-4,db3-2,bior1.5-4,and sym5-3,respectively).The algorithm Kappa coefficients(0.89,0.86,0.85,and 0.83,respectively)and time consumption for prediction(140.60 ms,57.85 ms,70.67 ms,and 87.16 ms,respectively)were also superior to models based on CARS and PCA.DWT combined with deep learning can shorten prediction times,considerably improve the accuracy of classification and recognition,and alleviate the Hughes phenomenon,thus providing a new method for the fast,non-destructive detection and recognition of veterinary drug residues in beef.

关 键 词:HYPERSPECTRAL BEEF veterinary drug residues discrete wavelet transform convolutional neural network deep learning 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象