检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖圳 何彦[1] 李育锋[1] 吴鹏程 刘德高 杜江 XIAO Zhen;HE Yan;LI Yu-feng;WU Peng-cheng;LIU De-gao;DU Jiang(State Key Laboratory of Mechanical Transmissions,Chongqing University,Chongqing 400030,China;Chongqing Yazaki Meter Co.,Ltd.,Chongqing 401123,China)
机构地区:[1]重庆大学机械传动国家重点实验室,重庆400030 [2]重庆矢崎仪表有限公司,重庆401123
出 处:《工程设计学报》2022年第1期20-27,共8页Chinese Journal of Engineering Design
基 金:重庆市技术创新与应用示范专项重点示范项目(cstc2018jszx-cyzdX0147)。
摘 要:汽车组合仪表生产过程中质检项目多且检测时间长,这在一定程度上制约了其生产效率的进一步提升。为此,提出一种基于改进最远点合成少数类过采样技术(max distance synthetic minority over-sampling technique,MDSMOTE)的支持向量机(support vector machine,SVM)分类预测方法。首先,结合专家经验对汽车组合仪表的原始生产数据进行特征筛选,并在MDSMOTE中引入类不平衡率IR,以对所筛选的特征数据进行扩充;然后,利用粒子群优化(particle swarm optimization,PSO)算法对SVM的误差惩罚因子C和核函数参数γ进行优化;最后,建立优化的SVM分类预测模型,并对汽车组合仪表进行分类。通过与其他分类预测模型在不同数据集上的预测结果进行对比可知,基于改进MDSMOTE的SVM分类预测模型的准确率、F值和几何平均值等评价指标均优于其他模型。所提出方法在汽车仪表产品分类上表现出较强的泛化能力和稳定性,可为仪表制造企业生产效率的提升提供有效参考。The numerous quality inspection items and long inspection time in the production process of automobile combination instruments have restricted the further improvement of production efficiency to a certain extent.To this end,a support vector machine(SVM)classification prediction method based on the improved max distance synthetic minority over-sampling technique(MDSMOTE)was proposed.Firstly,the feature selection for the original automobile combination instrument production data was carried out combined with the expert experience,and the class imbalance rate IR was introduced into the MDSMOTE to expand the selected feature data;then,the error penalty factor C and the kernel parameterγof the SVM were optimized by the particle swarm optimization(PSO)algorithm;finally,an optimized SVM classification prediction model was established to make classifications for the automobile combination instruments.Compared with the prediction results of other classification prediction models on different data sets,the SVM classification prediction model based on the improved MDSMOTE was superior to other models in terms of the evaluation indexes as accuracy,F value and geometric mean value.The proposed method shows strong generalization ability and stability in the classification of automotive instrument products,which can provide an effective reference for the improvement of production efficiency of instrument manufacturers.
关 键 词:汽车组合仪表 分类预测 改进最远点合成少数类过采样技术 支持向量机 粒子群优化
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.173.223