基于时间反演的上行NOMA系统能效优化算法  被引量:1

Energy efficiency optimization algorithm for uplink NOMA systems with time reversal

在线阅读下载全文

作  者:陈善学[1] 吴生金 谷博文 CHEN Shanxue;WU Shengjin;GU Bowen(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Engineering Research Center of Mobile Communications of the Ministry of Education,Chongqing 400065,China;Chongqing Key Laboratory of Mobile Communications Technology,Chongqing 400065,China)

机构地区:[1]重庆邮电大学通信与信息工程学院,重庆400065 [2]移动通信教育部工程研究中心,重庆400065 [3]移动通信技术重庆市重点实验室,重庆400065

出  处:《系统工程与电子技术》2022年第3期1007-1013,共7页Systems Engineering and Electronics

基  金:国家自然科学基金(61771084);重庆市教委科学技术项目(KJQN201800834)资助课题。

摘  要:为了解决上行非正交多址接入(non-orthogonal multiple access, NOMA)系统在多径环境下传输效率较低问题,提出了一种基于时间反演(time reversal, TR)的上行NOMA网络资源分配算法。首先,利用TR技术独特的空时聚焦特性,增大信号的接收强度。其次,考虑用户最小传输速率约束和用户最大发射功率约束,建立了系统能效最大化资源分配模型。然后,利用分式规划理论和连续凸近似方法,将所提出的非凸优化问题转化为凸优化问题,并利用拉格朗日对偶理论求得全局最优解。仿真结果表明,相较于传统算法,所提出的算法具有较好的能效。In order to solve the problem of low transmission efficiency in non-orthogonal multiple access(NOMA) system, a time reversal(TR) based uplink NOMA network resource allocation algorithm is proposed. Firstly, the signal receiving intensity of user is improved by the spatial-temporal focusing of the TR technology. Next, considering the user’s minimum transmission rate constraint and the user’s maximum transmission power constraint, a resource allocation model for maximizing system energy efficiency is established. Then, by using fractional programming theory and continuous convex approximation method, the proposed non-convex optimization problem is transformed into a convex optimization problem, and the global optimal solution is obtained by using Lagrangian duality theory. Simulation results show that compared with traditional algorithms, the proposed algorithm has better energy efficiency.

关 键 词:时间反演 非正交多址接入 资源分配 能效最大化 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象