检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李秋晖 韩华[1] 马媛媛 曾茜 李巧丽 Li Qiuhui;Han Hua;Ma Yuanyuan;Zeng Xi;Li Qiaoli(School of Science,Wuhan University of Technology,Wuhan 430070,China)
出 处:《计算机应用研究》2022年第3期764-769,共6页Application Research of Computers
基 金:国家自然科学基金资助项目(11601402)。
摘 要:准确度量复杂网络中节点的重要度对于研究网络结构和功能等方面具有重要的指导意义。现有多数节点重要度评估算法考虑了节点及其邻居节点的相关信息,却忽略了节点间的拓扑结构对节点重要度的影响。针对此问题,提出了基于引力模型及相对路径数的节点重要度评估算法。该算法首先分析了相对最短路径数对节点间信息传播的影响效果,同时考虑到非最短路径及路径距离等因素的影响,然后以三阶范围内邻居节点与中心节点的相互作用力之和定义节点重要度值,最后在六个真实网络中进行仿真实验。实验结果表明,所提算法不仅能有效区分网络中不同节点之间的重要度差异,还能准确度量网络节点的重要度大小。Accurately measuring the importance of nodes in complex networks has important guiding significance for the study of network structure and functions. Most existing node importance evaluation algorithms consider the relevant information of the node and its neighbor nodes, but ignore the influence of the topological structure between nodes on the importance of the node. To solve this problem, this paper proposed a node importance evaluation algorithm based on gravity model and relative path number. The algorithm firstly analyzed the effect of the relative shortest path number on the information dissemination between nodes, and considered the influence of factors such as non-shortest path and path distance, then defined the node importance by the sum of the interaction force between the neighbor node and the center node in the third-order range, and finally simulated it in six real networks. Experimental results show that the proposed algorithm can not only effectively distinguish the importance of different nodes in the network, but also accurately measure the importance of network nodes.
关 键 词:复杂网络 节点重要度 路径数 相互作用力 鲁棒性
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.16.26