双能CT虚拟单能+图像鉴别肺癌和邻近肺不张的初探  被引量:8

Virtual Monoenergetic Images (mono+) Derived from Dual-Energy CT to Differentiate Lung Cancer from Adjacent Atelectasis: A Preliminary Study

在线阅读下载全文

作  者:方家杨 梁长宇 陶俊利 余宏 张久权 FANG Jiayang;LIANG Changyu;TAO Junli(Department of Radiology,Chongqing University Cancer Hospital,Chongqing 400030,P.R.China)

机构地区:[1]重庆大学附属肿瘤医院影像科,400030

出  处:《临床放射学杂志》2021年第12期2309-2314,共6页Journal of Clinical Radiology

基  金:国家自然科学基金面上项目(编号:82071883);重庆大学中央高校医工结合项目(编号:2019CDYGYB008);重庆市科卫联合项目(编号:2019ZDXM007)。

摘  要:目的探究双能CT虚拟单能+图像对于鉴别肺癌及邻近的肺不张组织的可行性。方法 30例肺癌伴肺不张的患者被纳入研究中。重建动脉期和静脉期40~70 keV间隔为10 keV的虚拟单能+图像以及线性混合图像。图像的主观评价包括总体图像质量、图像锐利度、图像噪声以及肺癌与肺不张的可区分度。客观评价包括信噪比和对比噪声比。结果静脉期40 keV虚拟单能+图像肺癌与肺不张的可区分度、对比噪声比和信噪比均高于其他序列(P≤0.042),且此序列图像上肺癌与肺不张的CT值差值均高于其他序列(P≤0.038)。结论静脉期40 keV虚拟单能+图像有助于鉴别肺癌及邻近肺不张组织。Objective To evaluate the feasibility of virtual monoenergetic images(VMIs)(mono+) in differentiating lung cancer from atelectasis. Methods Thirty lung cancer patients with atelectasis were included.VMIs(mono+) in the arterial phase(AP) and venous phase(VP) from 40-70 keV in intervals of 10 keV and linearly blended images were reconstructed.The subjective analyses included assessments of overall image quality, image sharpness, image noise and tumor and atelectasis differentiation.The objective analyses included contrast-to-noise ratio(CNR) and signal-to-noise ratio(SNR). Results The subjective ratings of tumor and atelectasis differentiation, CNR,SNRlesion and SNRatelectasis of 40 keV VMIs(mono+) in the VP were significantly higher than those of the rest series(P≤0.042).The CT value differences between lung cancer and atelectasis on 40 keV VMIs(mono+) in the VP were significantly higher than that on the rest series(P≤0.038). Conclusion The preliminary results indicated the potential of 40 keV VMIs(mono+) in the VP in lung cancer and atelectasis discrimination.

关 键 词:双能CT 虚拟单能+图像 肺癌 肺不张 

分 类 号:R734.2[医药卫生—肿瘤] R730.44[医药卫生—临床医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象