检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢远明 孙兰香[2,3,4] 袁德成[1] 齐立峰[2,3,4] 尚栋 陈彤 XIE Yuanming;SUN Lanxiang;YUAN Decheng;QI Lifeng;SHANG Dong;CHEN Tong(Shenyang University of Chemical Technology,Shenyang 110142,China;State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;Key Laboratory of Networked Control Systems,Chinese Academy of Sciences,Shenyang 110016,China;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169,China;University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]沈阳化工大学,辽宁沈阳110142 [2]中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳110016 [3]中国科学院网络优化控制系统重点实验室,辽宁沈阳110016 [4]中国科学院机器人与智能制造创新研究院,辽宁沈阳110169 [5]中国科学院大学,北京100049
出 处:《冶金分析》2022年第1期18-24,共7页Metallurgical Analysis
基 金:国家重点研发计划项目(2016YFF0102502);中国科学院前沿科学重点研究计划(QYZDJ-SSW-JSC037);中国科学院区域服务网络计划项目(KFJ-STS-QYZD-2021-19-002);中国科学院青年创新促进会资助、“辽宁省‘兴辽英才计划’项目”(XLYC1807110)。
摘 要:目前检测矿浆品位相对准确的方法是传统化学分析,但周期长、有滞后性,无法实现在线检测。实验利用激光诱导击穿光谱(Laser induced breakdown spectroscopy, LIBS)在线、原位、快速等优点,分析了铁矿选矿过程尾矿浆中铁元素的品位值。由于LIBS采集到的光谱数据中存在大量对成分分析无用的冗余信息,进而增加了建模复杂程度,导致建立的模型精确度不够、泛化能力不强。因此,在偏最小二乘(PLS)模型基础上,提出了基于互信息特征筛选的偏最小二乘模型。实验结果表明,与传统的PLS模型相比,基于互信息特征筛选的偏最小二乘模型在分析精度上得到了明显改善,测试样品的决定系数R;从0.52提高到0.90,测试样本的平均绝对误差(MAEP)从2.87%下降到1.38%,总样本的平均绝对误差(MAE)从1.0%下降到0.60%。At present, the relative accurate method for the detection of iron slurry grade is the traditional chemical analysis. However, this method has long testing period and lagging problem. Moreover, it cannot realize the online detection. Laser induced breakdown spectroscopy(LIBS) has some advantages such as on line, in situ and rapidness, etc. Therefore, the grade of iron element in iron slurry tailings from iron ore beneficiation was analyzed by LIBS. Since the spectral data collected by LIBS contained a lot of useless redundant information for composition analysis, the modeling complexity was increased, leading to insufficient accuracy and poor generalization ability of the established model. Therefore, refer to the partial least squares(PLS) model, the PLS based on mutual information feature selection was proposed. The experimental results showed that the analytical accuracy of PLS model based on mutual information feature selection was significantly improved compared to the conventional PLS model. The determination coefficient(R;) of sample increased from 0.52 to 0.90. The mean absolute error(MAEP) of testing sample decreased from 2.87% to 1.38%. The mean absolute error(MAE) of total samples decreased from 1.0% to 0.60%.
关 键 词:激光诱导击穿光谱(LIBS) 铁矿浆 特征筛选 互信息 偏最小二乘(PLS) 铁品位
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.85.212