基于Mask-RCNN的纸质医药包装钢印字符识别  被引量:2

Stencil Character Recognition of Paper Medicine Packaging Based on Mask-RCNN

在线阅读下载全文

作  者:吴彪 周庆华[1] 曾小为 WU Biao;ZHOU Qing-hua;ZENG Xiao-wei(School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China;Nevil Intelligent Technology Co. Ltd., Changsha 410007, China)

机构地区:[1]长沙理工大学物理与电子科学学院,湖南长沙410114 [2]纳威尔智能科技有限公司,湖南长沙410007

出  处:《计算机与现代化》2022年第2期108-113,共6页Computer and Modernization

基  金:国家自然科学基金资助项目(42074198)。

摘  要:为实现纸质医药包装钢印字符的实时检测,设计一种基于图像处理和深度学习的钢印字符识别系统。系统首先采用多种图像处理的方法对原始打光下的图像进行预处理,从而自动提取图片中的感兴趣区域,并将其输入训练好的Mask-RCNN网络进行实例分割,得到每张图片中的不同字符的像素位置与其字符数值。实验结果表明,对比传统的字符识别方法,该方法可以很好地解决纸质医药包装钢印字符图片中灰度跳变不明显的问题,准确分割出纸质包装盒图片中的钢印字符并进行标记,其字符的识别准确率达到99%,为生产线上钢印字符的识别和记录提供了新的解决思路,具有较高的实用价值。In order to realize the real-time detection of stencil characters on paper medical packaging,a stencil character recognition system based on image processing and deep learning is designed.The system first uses a variety of image processing methods to preprocess the image under the original lighting,thereby automatically extracting the region of interest in the image,and inputting it into the trained Mask-RCNN network for instance segmentation,then the pixel positions of different characters and their character values in each picture are obtained.The experimental results show that,compared with the traditional character recognition method,this method can solve the problem of insignificant gray-scale jumps in the stencil character pictures of paper medical packaging well,and accurately segment and mark the stencil characters in the picture of the paper packaging box.It has high practical value and its character recognition accuracy rate reaches 99%,which provides a new solution for the recognition and recording of stamped characters on the production line.

关 键 词:钢印字符识别 实例分割 Mask-RCNN 感兴趣区域 灰度跳变 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象